
VAULT
MODERN SECRETS MANAGEMENT

 CLICK ENGAGE
TO RATE
SESSIONRATE 12 SESSIONS AND GET
THE SUPERCOOL GOTO
PRIZE

SETH VARGO
@sethvargo

SECRET MANAGEMENT

WHAT IS "SECRET"?

SECRET VS. SENSITIVE

SECRET SENSITIVE

SECRET SENSITIVE
DB CREDENTIALS

CLOUD ACCESS KEYS

SSL CA/CERTIFICATES

ENCRYPTION KEYS

WIFI PASSWORDS

SOURCE CODE

SECRET SENSITIVE
DB CREDENTIALS

CLOUD ACCESS KEYS

SSL CA/CERTIFICATES

ENCRYPTION KEYS

WIFI PASSWORDS

EMAIL ADDRESSES

PHONE NUMBERS

MOTHER'S MAIDEN NAME

DATACENTER LOCATIONS

CUSTOMER PII

SOURCE CODE EMAIL/CHAT

SECRET SENSITIVE
DB CREDENTIALS

CLOUD ACCESS KEYS

SSL CA/CERTIFICATES

ENCRYPTION KEYS

WIFI PASSWORDS

EMAIL ADDRESSES

PHONE NUMBERS

MOTHER'S MAIDEN NAME

DATACENTER LOCATIONS

CUSTOMER PII

SOURCE CODE EMAIL/CHAT

SECRET SENSITIVE
DB CREDENTIALS

CLOUD ACCESS KEYS

SSL CA/CERTIFICATES

ENCRYPTION KEYS

WIFI PASSWORDS

EMAIL ADDRESSES

PHONE NUMBERS

MOTHER'S MAIDEN NAME

DATACENTER LOCATIONS

CUSTOMER PII

SOURCE CODE EMAIL/CHAT

SECRET SENSITIVE

ANYTHING THAT MAKES THE NEWS

SECRET MANAGEMENT 1.0

HOW DO I DISTRIBUTE SECRETS?

How do applications get secrets?

How do humans acquire secrets?

How are secrets updated?

How is a secret revoked?

{
 "mysql_user": "root",
 "mysql_pass": "s3(Ret"
}

secure master cat config.son

WHY NOT CONFIG MANAGEMENT?

Centrally stored

Eventually consistent

No access control

No auditing

No revocation

WHY NOT (ONLINE) DATABASES?

RDBMS, Consul, ZooKeeper, etc

Not designed for secrets

Limited access controls

Typically plaintext storage

No auditing or revocation abilities

HOW TO HANDLE SECRET SPRAWL?

Secret material is distributed

Who has access?

When were secrets used?

What is the attack surface?

What do we do in the event of a compromise?

STATE OF THE WORLD 1.0

Secret sprawl

Decentralized keys

Limited visibility

Poorly defined “break glass” procedures

SECRET MANAGEMENT 2.0

VAULT
MODERN SECRETS MANAGEMENT

VAULT GOALS

Single source for secrets

Programmatic application access (Automated)

Operator access (Manual)

Practical security

Modern data center friendly

VAULT FEATURES

Secure secret storage (in-memory, Consul, file, postgres, and more)

Dynamic secrets

Leasing, renewal, and revocation

Auditing

Rich ACLs

Multiple client authentication methods

SECURE SECRET STORAGE

Data is encrypted in transit and at rest

256bit AES in GCM mode

TLS 1.2 for clients

No HSM required

Success! Data written to: secret/foo

secure master vault write secret/foo bar=bacon

Key Value
lease_id secret/foo/2a798f6f-00da-8d48-659a-ef1c969f23ed
lease_duration 2592000
lease_renewablefalse
bar bacon

secure master vault read secret/foo

DYNAMIC SECRETS

Never provide “root” credentials to clients

Provide limited access credentials based on role

Generated on demand when requested

Leases are enforceable via revocation

Audit trail can identify point of compromise

Successfully mounted 'postgresql' at 'postgresql'!

secure master vault mount postgresql

DESCRIPTION

The PostgreSQL backend dynamically generates database users.

After mounting this backend, configure it using the endpoints within
the "config/" path.

PATHS

The following paths are supported by this backend. To view help for
any of the paths below, use the help command with any route matching
the path pattern. Note that depending on the policy of your auth token,
you may or may not be able to access certain paths.

 ^config/connection$
 Configure the connection string to talk to PostgreSQL.

secure master vault help postgresql

 vault write postgresql/config/connection \
 value="user=hashicorp password=hashicorp database=hashicorp"

Success! Data written to: postgresql/config/connection

secure master \

 vault write postgresql/roles/production name=production

Success! Data written to: postgresql/roles/production

secure master \

Key Value
lease_id postgresql/creds/production/2d483e34-2d82-476...
lease_duration 3600
lease_renewabletrue
password 80e6ffa5-d6e9-beb1-e630-9af0c41299bb
username vault-root-1432058168-8081

secure master vault read postgresql/creds/production

Key Value
lease_id postgresql/creds/production/a99b952e-222c-6eb...
lease_duration 3600
lease_renewabletrue
username vault-root-1432058254-7887
password 17a21ba7-8726-97e4-2088-80b7a756702b

secure master vault read postgresql/creds/production

DYNAMIC SECRETS

Pluggable Backends

AWS, Consul, PostgreSQL, MySQL, Transit, Generic

Grow support over time

LEASING, RENEWAL, AND REVOCATION

Every Secret has a Lease*

Secrets are revoked at the end of the lease unless renewed

Secrets may be revoked early by operators

“Break Glass” procedure

Dynamic Secrets make leases enforceable

Not possible for arbitrary secrets

Not possible for transit backend

AUDITING

Pluggable Audit Backends

Request and Response Logging

Prioritizes Safety over Availability

Secrets Hashed in Audits

Searchable, but not reversible

RICH ACLS

Role Based Policies

Restrict access to “need to know”

Default Deny, must be explicitly allowed

FLEXIBLE AUTH

Pluggable Backends

Tokens, GitHub, AppID, User/Pass, TLS Certs

Machine-Oriented vs Operator-Oriented

HIGH AVAILABILITY

Consul used for leader election

Active/Standby

Automatic failover

UNSEALING THE VAULT

Data in Vault encrypted

Vault requires encryption key

Must be provided online

Sealed: true
Key Shares: 10
Key Threshold: 7
Unseal Progress: 6

High-Availability Enabled: false

secure master vault status

Key (will be hidden):

secure master vault unseal

Key (will be hidden):

Sealed: false
Key Shares: 10
Key Threshold: 7
Unseal Progress: 0

secure master vault unseal

WATCHING THE WATCHMEN

Master Key is the “key to the kingdom”

All data could be decrypted

Protect against insider attack

Two-Man Rule

SHAMIR SECRET SHARING

Protect Encrypt Key with Master
Key

Split Master Key into N shares

T shares to recompute Master

Quorum of key holders required to
unseal

Default N:5, T:3

SUMMARY

Solves the “Secret Sprawl Problem”

Protects against external threats (Cryptosystem)

Protects against internal threads (ACLs and Secret Sharing)

BUILDING ON VAULT

SECURITY FOUNDATION

Base of Trust

Core Infrastructure

Flexible Architecture

Foundation for Security Infrastructure

PERSONALLY IDENTIFIABLE INFORMATION

PII information is everywhere

SSN, CC#, OAuth Tokens, etc.

Email? Physical address?

Security of storage?

Scalability of storage?

Audibility of access?

PII WITH VAULT

“transit” backend in Vault

Encrypt/Decrypt data in transit

Avoid secret management in client applications

Builds on Vault foundation

TRANSIT BACKEND

Web server has no encryption keys

Requires two-factor compromise (Vault + Datastore)

Decouples storage from encryption and access control

CERTIFICATE AUTHORITY

Vault acts as Internal CA

Vault stores root CA keys

Dynamic secrets - generates signed TLS keys

No more tears

MUTUAL TLS FOR SERVICES

Dynamic CA allows all services to generate keys

All internal service communication can use mutual TLS

End-to-End encryption inside the datacenter

VAULT IN PRACTIVE

USING VAULT

API Driven

JSON/HTTPS

Rich CLI for humans and scripts

Rich client libraries

APPLICATION INTEGRATION

Vault-aware

Native client libraries (go, ruby, rails, python, node, and more)

Secrets only in-memory

Safest but high-touch

CONSUL TEMPLATE INTEGRATION

Secrets templatized into application configuration

Vault is transparent

Lease management is automatic

Non-secret configuration still via Consul

{{ with $secret := vault "postgresql/creds/production" }}

production:
 adapter: postgresql
 database: postgres.service.consul
 username: {{$secret.Data.username}}
 password: {{$secret.Data.password}}
 pool: {{key "production/postgres/pool"}}
{{ end }}

secure master cat secrets.yml.ctmpl

 REMEMBER TO
RATE THIS
SESSIONTWEET @SETHVARGO FOR
QUESTIONS TOO

hashicorp/vault

https://vaultproject.io

security@hashicorp.com

QUESTIONS?
THANK YOU!

