
Database
Refactoring

Devclub.eu
25.03.2011 Anton Keks

keeping up with evolution

A few words of warning...

3

Avoid overspecialization

Application Developer Database Developer

--- B
A

R
R

IER

Developer Developer

Communication
Collaboration
Understanding

Knowledge-exchange
New skills

4

Refactoring

In Maths, to “factor” is to reduce an expression
to it's simplest form

In CS, is the disciplined way to restructure code
● Without adding new features
● Improving the design
● Often making the code simpler, more readable

5

Definition: Code Refactoring

● A small change to the code to improve design
that retains the behavioural semantics of the
code

● Code refactoring allows you to evolve the code
slowly over time, to take evolutionary
approach to programming

6

Definition: Database Refactoring

● A simple change to a schema that improves its
design while retaining behavioural and
informational semantics

● A database includes both structural aspects as
well as functional aspects

7

It's

Refactoring

not

Refucktoring

8

Why refactor?

● To safely fix existing legacy databases
● They are here to stay
● They are not going to fix themselves!

● To support evolutionary development
● Because our business, our customers are changing
● The world around our software is evolving

● Prevent over-design
● Simple, maintainable code and data model

9

Leads to Evolutionary Design

● Small steps
● The simplest design first
● Unit tests of stored code (or avoid it!)
● Design is final only when the code is ready

10

Otherwise, it can happen that
Database is not under control

It lives its own life and is controlling us

The DB

11

The DB

Database Smells

12

Database Smells
● All known code smells also apply to stored code

as well, including:
● Monster procedures
● Spaghetti code
● Code duplication
● IF-ELSE overuse
● Code ladder
● Low cohesion
● etc

13

Database Smells
● Database schema can add to the musty odour

● Multi-purpose table / column
● Redundant data
● Tables with many columns / rows
● “Smart” columns
● Lack of constraints
● Fear of change

14

Fear of change

● The strongest of all smells
● Prevents innovation
● Reduces effectiveness
● Produces even more mess
● Over time, situation gets only worse

15

How to do it right?

● Start in your development sandbox
● Apply to the integration sandbox(es)
● Install into production

“Keep out of my unstable development DB!”

16

Project A

Sandboxes (1)

Development
SandboxDevelopment

Sandbox

Project B

Development
SandboxDevelopment

Sandbox

Project A
Integration

Sandbox

Project B
Integration

Sandbox

Pre-production
Sandbox

Demo
Sandbox(es)

Production

frequent
deployment

controlled
deployment

highly
controlled

deployment

17

Best case scenario (easiest)

The Application

The DB

18

Worst case scenario (hardest)

The Application

The DB

Other applications
we know about

Other applications
we know about

Other applications
we know about

Other applications
we don't know

Other
DBs

Persistence
frameworks

Test code

Data
imports

Data
exports

19

Trivial case

● Can we rename a column in our DB?
● Without breaking 100 applications?

● If we can't do something trivial, how can we
do something important?

● If we can't evolve the schema, we are most likely
not very good at developing applications

20

Testing (2)

● Do we have code in the DB that implements
critical business functionality?

● Do we consider data an important asset?
● … and it's all not tested?

● Automatic regression tests would help
● Proper refactoring cannot happen without

them

21

Database Unit Tests

● Too complex?
● No good framework?

create or replace package dbunit
is
 procedure assert_equals(expected number, actual number);
 procedure assert_equals(expected varchar2, actual varchar2);
 procedure assert_null(actual varchar2);
 procedure assert_not_null(actual varchar2);
 ...
end;

create or replace public synonym dbunit for dbunit;
grant execute on dbunit to public;

22

Running Unit Tests

● Anonymous PL/SQL code
● No need to change the DB
● Assertions raise_application_error with

specific message if tests fail
● Rollback at the end
● Runnable with any SQL tool
● Or with ant

23

PL/SQL Unit Test example

declare
 xml XmlType;
begin
--@Test no messages in case of no changes
 xml := hub.next_message(0);
 dbunit.assert_null(xml);

--@Test identification number change message
 hub_api.ident_number_changed('123', '007', 'PERSONAL_CODE',

'LV', '888', current_timestamp);
 xml := hub.next_message(1);
 dbunit.assert_xpath('123', '/hub/party/@source_ref', xml);
end;

24

How to deal with coupling?

● Big-Bang approach
● Usually, you can't fix all 100 apps at once

● Give up
● And afford even more technical debt?

● Transition Window approach
● Can be a viable solution

25

Transition Window (3)

● Deprecate the old schema
● Write tests if not present
● Decide on the removal date, communicate it out

● Create the change
● Make the old schema work (scaffolding code)

● Run the tests

Implement the
refactoring

Transition period
(old schema deprecated)

Refactoring
completed

Deploy new schema, migrate
data, add scaffolding code

Remove old schema
and scaffolding code

26

Dealing with unknown applications

● It's easy to eliminate all usages in
● the DB itself
● the application you are developing

● Log accesses to the deprecated schema
● Helps to find these 'unknown' applications

27

Changelog (4)

● Doing all this needs proper tracking of changes
● Write delta-scripts (aka migrations)

● To start the transition period
● To end the transition period (these will be

applied on a later date/release)
● Same scripts for

● Updating sandboxes
● Deployment to production

28

What to refactor in a DB?

● Databases usually contain
● Data (stored according to a schema)
● Stored code

● Stored code is no different from any other code
● except that it runs inside of a database

● Database schema
● Data is the state of a database
● Maintaining the state needs a different approach

from refactoring the code

29

Upgrade/Downgrade Tool

● Upgrade tool will track/update the changelog
table automatically

● Each DB will know it's state (version)
● It will be easy to upgrade any sandbox

● Downgrading possibility is also important
● Delta scripts need to be two-way, i.e. include

undo statements
● It will be easy to switch to any other state

– e.g. in order to reproduce a production bug

30

Sample refactoring script
-- rename KLK to CUSTOMER_ID
ALTER TABLE CUSTOMER ADD COLUMN CUSTOMER_ID NUMBER;
UPDATE CUSTOMER SET CUSTOMER_ID = KLK;
-- keep KLK and CUSTOMER_ID in sync
CREATE TRIGGER ...;

--//@UNDO
DROP TRIGGER ...;
ALTER TABLE CUSTOMER DROP COLUMN CUSTOMER_ID;

-- this will go to another script for later deployment
-- finish rename column refactoring
DROP TRIGGER ...;
ALTER TABLE CUSTOMER DROP COLUMN KLK;
--//@UNDO
...

31

dbdeploy

● http://dbdeploy.com
● Very simple
● Runnable from ant or command-line
● Delta scripts

● Numbered standard .sql files
● Unapplied yet delta scripts run sequentially
● Nothing is done if the DB is already up-to-date

http://dbdeploy.com/

32

liquibase

● http://liquibase.org
● More features, more complex
● Runnable from ant or command-line
● Delta scripts

● In XML format (either custom tags or inline SQL)
● Many changes per file
● Identifies changes with Change ID, Author, File
● Records MD5 for detecting of changed scripts

http://liquibase.org/

33

Versioning

Development
DB

v47.29
Development

DB
v47.34

Development
DB

v46.50

Development
DB

v45.82

Integration
DB

v47.29

Pre-production
DB

v46.45

Demo
DB

v46.13

Production
v45.82

Each DB knows its release/version number and can be
upgraded/downgraded to any other state

34

Proper Versioning

● Baseline (aka skin)
● Delta scripts (migrations)
● Code changes

● Branch for a release
● New baseline after going to production
● The goal of versioning a database is to push

out changes in a consistent, controlled manner
and to build reproducible software

35

Continuous Integration (5)

● CI server will verify each commit to the VCS
● By deploying it into an integration sandbox
● And running regression tests
● Fully automatically

● All the usual benefits
● Better quality, Quick feedback
● Build is always ready and deployable
● Developers are independent
● No locking, no overwriting changes!!!

36

Teamwork (6)

● Developers
● Must work closely with Agile DBAs
● Must gain basic data skills

● Agile DBAs/DB developers
● Must be embedded into the development team
● Must gain basic application skills

37

Oracle SQL Developer

Tools

● Delta scripts
● dbdeploy, liquibase, deltasql
● Easy to write our own!

● PL/SQL code

vs

In
te

ll
ij

 I
D

EA
 (

Ja
va

)

38

Enabling database refactoring

(1) Development Sandboxes

(2) Regression Testing

(3) Transition Window approach

(4) Versioning with Changelog & Delta scripts

(5) Continuous integration

(6) Teamwork & Cultural Changes

39

The Catalog

● Scott Ambler and Pramod Sadalage have
created a nice catalog of DB refactorings

● http://www.ambysoft.com/books/refactoringDatabases.html

● Classification
● Structural
● Data Quality
● Referential Integrity
● Architectural
● Method (Stored code)
● Transformations

(non-refactorings)

http://www.ambysoft.com/books/refactoringDatabases.html

40

Best practices

● Refactor to ease additions to your schema
● Ensure the test suite is in place
● Take small steps
● Program for people
● Don’t publish data models prematurely
● The need to document reflects a need to

refactor
● Test frequently

(according to Scott Ambler)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

