

Simple Simple
Pure Pure
JavaJava

Anton KeksAnton Keks
anton@codeborne.comanton@codeborne.com

The Enterprise...The Enterprise...

Enterprise Architecture

20 years ago a new field was born, addressing

System complexity = more and more
money for building IT systems

Poor business alignment = more difficult
to keep those increasingly expensive
systems aligned with business need

A problem of more cost, less value
Today: even more cost, even less value

ComplexityComplexity

☠☠BOO!
BOO!

Your average Java (web) appYour average Java (web) app

● Framework (JSF?)
● Model
● Portal?
● Services!
● Remote services, SOA, EJB
● JNDI
● Stubs, generated code
● How many layers?

......

● Patterns!
● Factory, Singleton, Facade
● Enterprise patterns!
● DTO, DAO, etc
● Getters/setters

(what's the deal - generate 'em)
● JPA, JAXB
● JMS!

Bad wordsBad words

 It's always nice to see guys like

 SessionServiceContextManager

Layer Tier Bus
 Context Manager
 Locator Assembler Bean
 Broker Facade
 Transfer Object DAO
 …

or AbstractStrategyFactoryProxyFacadeBuilder

EAR, WAR, WAR, WAREAR, WAR, WAR, WAR

Configuration, descriptors!Configuration, descriptors!

JNDI!JNDI!

ESB? ;-)ESB? ;-)

Must be a wizard to make it all run!Must be a wizard to make it all run!

Improves job security index :-)Improves job security index :-)

For a small thing we createFor a small thing we create

● ManagedBean
● MegaServiceWrapper
● CoreServiceLocal, Stub (JNDI lookup?)
● CoreService (&& CoreServiceImpl)
● AggregatedService
● ConcreteService
● ConcreteDAO
● JPAAdapter
● ...

The result?The result?

● It kills productivity
● Thousands lines of code, very few

functionality
● Well hidden ”business logic”
● N minute deploy time (+ N minutes app

server startup)
● Oops, sometimes redeploy doesn't work,

need to restart
● Slow UI responsivness

☠

What to do?What to do?

● Concentrate on domain terminology
● This was the intention of OOP

● Avoid overly defensive code
● You are not writing a framework!
● Fellow developers are friends

● Follow Clean Code by Robert C. Martin

Java platform and languageJava platform and language

● Java (EE) is a victim of JCP
● Many unreal/unusable JSRs

● Stick to proven open-source stuff
● Less standards – the better

● Java language is ok
● The biggest miss are closures
● DSLs are possible: Mockito, LambdaJ
● Don't bloat (generate) your code

Code styleCode style

● Is your code style limiting readability?
● Avoid too many line breaks and braces
● Emphasize what is important

public int size() {
 if (root == null) {
 return 0;
 }
 else {
 return root.numSiblings();
 }
}

public int size() {
 if (root == null) return 0;
 return root.numSiblings();
}

public int size() {
 return root != null ?
 root.numSiblings() : 0;
}

Code styleCode style

● Avoid over-indenation (or code ladder)
public void startCharging() {
 if (customer.hasFunds()) {
 if (!station.isCharging()) {
 if (!station.currentlyBooked()) {
 reallyStartCharging();
 return;
 }
 }
 }
 throw new UnableToStartException();
}

public void startCharging() {
 if (!customer.hasFunds()) throw new UnableToStart
 if (station.isCharging()) throw new UnableToStart
 if (station.currentlyBooked()) throw new UnableToStart

 reallyStartCharging();
}

Code styleCode style

● Prefer shorter code (use static imports)

import static java.util.Arrays.*;
import static java.util.Collections.*;
...

return unmodifiableList(asList(1, 2, 3))

List<Integer> list = Arrays.asList(1, 2, 3));
list = Collections.unmodifieableList(list);
return list;

Looks a bit like functional programming, isn't it?

Code styleCode style

● Prefer good naming to comments
● Avoid getters/setters, equals, hashCode,

toString unless necessary
● Break free from 'conventions'
● Work towards a DSL

when(session.currentUser()).thenReturn(fakeUser);

assertThat(person.age, is(25));

sort(people, on(Person.class).getAge());

Proper Java appProper Java app

● Jetty Launcher (esp in development)
● Know the APIs well: servlets, filters, etc
● Avoid vendor-specific stuff
● Keep environment-specific configuration

in version control
● Dependency Injection
● Avoid scattering cross-cutting concerns
● DB migrations (w/ liquibase/dbdeploy)
● Start thin and simple, prefer higher SNRSNR

Web UIWeb UI

● Your framework tells you don't need to
know JavaScript? (GWT, JSF, etc)

● B.S.!
● Keep it under control: learn basics of

JQuery instead
● Knockout.js, Backbone.js can help
● You are not limited with Java syntax on

the client side :-)

Worth reminding...Worth reminding...

●Don't Repeat Yourself

●Keep It Simple Stupid

●You Ain't Gonna Need It

●Test Driven Development

Let's continue on Let's continue on
github:github:

github.com/angryziber/simple-javagithub.com/angryziber/simple-java

job@codeborne.comjob@codeborne.com

http://github.com/angryziber/simple-java

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

