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The problem

It is way too hard to build:
1. correct highly concurrent systems

2. truly scalable systems

3. fault-tolerant systems that self-heals

...using “state-of-the-art” tools
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Introducing 

Akka (Áhkká): 

The name comes from the goddess in the Sami 
mythology that represented all the wisdom and 

beauty in the world. 

It is also the name of a beautiful mountain in 
Laponia in the north part of Sweden
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Introducing 

View from the summit
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Vision

Simpler 

Concurrency 

Scalability

Fault-tolerance
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CORE 
SERVICES

THE TOOLBOX...
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The Actor...
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Akka Actors
Let the hakking begin!

Text
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•Create an Actor: class AnActor extends Actor
•Start an Actor: actorOf[AnActor].start()
•Safe

•Encapsulated state
•One message at a time

•Asynchronous:
•bang (!)

•Reply: 
•self.reply ( m )
•actor ? “message”

Take aways
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Akka Futures
without blocking

using
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Future
Promise

Future with value
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Future
Promise

Future with value
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•Use Futures when you need something in the 
Future without blocking

•Use onComplete
•Compose Futures

•for - comprehensions
•Check out the Futures utilities (firstCompletedOf 

and much, much more)

Take aways
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Remote Actors
Another snippet of code...
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New Remote Actors
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appContext.actorOf[MyActor](“my-service”)

Name

Bind the actor to a name
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•Actor name is virtual and decoupled from how it is 
deployed

•If no deployment configuration exists then actor is 
deployed as local

•The same system can be configured as distributed 
without code change (even change at runtime)

•Write as local but deploy as distributed in the cloud 
without code change

•Allows runtime to dynamically and adaptively 
change topology

Deployment
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akka {
  actor {
    deployment {
      /path/to/my-service {                 
        router = "round-robin"
        nr-of-instances = 3
      remote {

          nodes = ["wallace:2552", "gromit:2552"]                                           
        }
      }
    }
  }
}

Deployment configuration
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•Decentralized P2P gossip-based cluster membership 
(dynamo-style w/ vector clocks, hand-off on fail-over 
etc.)

•Automatic adaptive cluster rebalancing
•Automatic cluster-wide deployment
•Highly available configuration service
•Automatic replication with automatic fail-over upon 

node crash
•Transparent and user-configurable load-balancing
•...and much more

The runtime provides
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Akka Node
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Akka Node
val ping = actorOf[Ping](“ping”)
val pong = actorOf[Pong](“pong”)

pong ! Ball(ping)
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Akka Node
val ping = actorOf[Ping](“ping”)
val pong = actorOf[Pong](“pong”)

pong ! Ball(ping)

Ping Pong
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Akka Node

Akka
Cluster Node

Ping Pong
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akka {
  actor {
    deployment {
      /ping {}
      /pong {                 
        router = "round-robin"
        nr-of-instances  = 3
      }
    }
  }
}
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akka {
  actor {
    deployment {
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Summing
up
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Let it crash 
fault-tolerance
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...let’s take a 
standard OO 
application
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Which components have 
critically important state 

and 
explicit error handling?
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Fault-tolerant 
onion-layered 
Error Kernel
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Kernel
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Node 1 Node 2
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// from within an actor
context.actorOf[MyActor]

transparent and automatic fault handling by design

Parental automatic supervision
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Guardian Actor

Parental automatic supervision
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Supervision
class MySupervisor extends Actor {
  faultHandler = OneForOneStrategy({
  case _: ActorKilledException => Stop
  case _: ArithmeticException  => Resume
  case _: Exception            => Restart
  case _                       => Escalate

   },
   maxNrOfRetries  = None,
   withinTimeRange = None)

  def receive = {
    case NewUser(name) => 
      ... = context.actorOf[User](name)
  }
}
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Supervision
class MySupervisor extends Actor {
  faultHandler = OneForOneStrategy({
  case _: ActorKilledException => Stop
  case _: ArithmeticException  => Resume
  case _: Exception            => Restart
  case _                       => Escalate

   },
   maxNrOfRetries  = None,
   withinTimeRange = None)

  def receive = {
    case NewUser(name) => 
      ... = context.actorOf[User](name)
  }
}

AllForOneStrategy
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class FaultTolerantService extends Actor {
  ...
  override def preRestart(
    reason: Throwable, message: Option[Any]) = {
    ... // clean up before restart
  }
  override def postRestart(reason: Throwable) = {
    ... // init after restart
  }
}

Manage failure
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ARCHITECTURE

TYPESAFE 
STACK

ADD-ONS
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Get it and learn more
http://akka.io

http://typesafe.com

https://gist.github.com/1388237
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