Above the Clouds:
Introducing Akka

Fredrik

~kholdt

Typesafe

Email: fredrik.ekholdt@typesafe.com
Twitter: @ekhfre

NNNNNNNNNNNNN
SOFTWARE DEVELOPMENT.

CONFERENCE
esday, November 23, 11

mailto:jonas@typesafe.com
mailto:jonas@typesafe.com

[he problem

[t 1s way too hard to build:

|. correct highly concurrent systems
2. truly scalable systems

3. fault-tolerant systems that self-heals

..using “'state-of-the-art” tools

AN

Introducing akka

eeeeeeeeeeeeeeeeeeeeeee

Introducing /
akka

Akka (Ahkka):

The name comes from the goddess In the Sami
mythology that represented all the wisdom and
beauty In the world.

't 1s also the name of a beautiful mountain In
Laponia in the north part of Sweden

Wednesday, November 23, 11

Introducing akka

Wednesday, November 23, 11

Vision

Simpler

Concurrency

Scalability

Fault-tolerance

Wednesday, November 23, 11

THE TOOLBOX..

. ~N
Fault-tolerance
Local Remote Ediilia
Actor Actor Detection
Supervision Supervision
~ N

Scalability CO RE
Routec Clustered Clustr SERVICES

Actors Actors Membership

N
J

Concurrency

Actors STM Agents Dataflow

Wednesday, November 23, 11

Wednesday, November 23, 11

Behavior

Wednesday, November 23, 11

Event-
driven

Actor

Behavior

eeeeeeeeeeeeeeeeeeeeeee

Event-
driven

Actor

Behavior

U

State

eeeeeeeeeeeeeeeeeeeeeee

Event-
driven

r

Actor ““‘

Behavior

U

State

eeeeeeeeeeeeeeeeeeeeeee

Event-
driven

r

Actor ““‘

Behavior

eeeeeeeeeeeeeeeeeeeeeee

Event-
driven

r

Actor ““‘

Behavior

eeeeeeeeeeeeeeeeeeeeeee

Behavior

Wednesday, November 23, 11

Event-
driven

r

Actor ““‘

Behavior

eeeeeeeeeeeeeeeeeeeeeee

Akka

et the begin!

1a |<e AW ays

e Start an Actor: actorOf[AnActor].start()
* Safe
* Encapsulated state
*» One message at a time
* Asynchronous:
* bang ()
* Reply:
*self.reply (m)
e actor ! “message”

Wednesday, November 23, 11

using

Akka

Q Future
® Promise
@

Future with value

Wednesday, November 23, 11

Q Future
® Promise
@

Future with value

Wednesday, November 23, 11

Q Future
® Promise
@

Future with value

Wednesday, November 23, 11

lake aways

=S

* Use Futures when you need something in the
-uture without blocking
* Use onComplete
» Compose Futures
* for - comprehensions
* Check out the Futures utllities (firstCompletedOf
and much, much more) '
|

e —————————— —— E— —— p—

Wednesday, November 23, 11

ACtOors
Another snippet of

New AYarelgs

Name

(:appContext.actorOf[MyActor](“my—service") :)

Bind the actor to a name

Wednesday, November 23, 11

Deployment

deployed |

* |[f no deployment configuration exists then actoris |
deployed as local

* [he same system can be configured as distributed
without code change (even change at runtime)

* Write as local but deploy as distributed in the cloud
without code change |

x

-+ Allows runtime to dynamically and adaptively
change topology (

e —————————— e e p— — — -

Wednesday, November 23, 11

Deployment configuration

/akka { \

actor {
deployment A
/path/to/my-service {

router = "round-robin"
nr—-of—-instances = 3
remote {
nodes = ["wallace:2552", '"gromit:2552"]
I
¥

_ /

[he runtime provides

————

- * Decentralized P2P gossip-based cluster membership

 (dynamo-style w/ vector clocks, hand-off on fail-over
etc.)

* Automatic adaptive cluster rebalancing

* Automatic cluster-wide deployment

- *Highly available configuration service

* Automatic replication with automatic fail-over upon
node crash

" * [ransparent and user-configurable load-balancing

~*..and much more

Wednesday, November 23, 11

Wednesday, November 23, 11

Wednesday, November 23, 11

Wednesday, November 23, 11

Akka
Cluster Node

Wednesday, November 23, 11

Akka
Cluster Node

r

r

Akka
Cluster Node

Akka
Cluster Node

r

Akka
Cluster Node

r

Akka
Cluster Node

Wednesday, November 23, 11

(

Akka
Cluster Node

r

r

Akka
Cluster Node

Akka
Cluster Node

r

Akka
Cluster Node

r

Akka
Cluster Node

Wednesday, November 23, 11

(

Akka
Cluster Node

r

Akka
Cluster Node

r

//rakka {

actor {
deployment {
/ping {}
/pong {
router = "round
nr—-of-instances
}
¥

—robin"
= 3

Akka
Cluster Node

~

r

Akka

Cluster Node

r

Akka
Cluster Node

Wednesday, November 23, 11

r

Akka
Cluster Node

r

//rakka {

actor {
deployment {
/ping {}
/pong {
router = "round
nr—of—-instances

—robin"
= 3

Akka
Cluster Node

~

r

Akka
Cluster Node

r

Akka
Cluster Node

Wednesday, November 23, 11

f/rakka {

actor {
deployment {
/ping {}
/pong {
router = "round-robin"
nr—-of-instances = 3

“\\

\} v

r

Akka
Cluster Node

Wednesday, November 23, 11

SuMmming

Wednesday, November 23, 11

fault-tolerance

...let’s take a
standard OO
application

.L‘.-‘ —

Which components have

' critically important state
l and

explicit error handling?

Wednesday, November 23, 11

eeeeeeeeeeeeeeeeeeeeeee

ERROR
KERNEL

Wednesday, November 23, 11

ERROR
KERNEL

Wednesday, November 23, 11

ERROR
KERNEL

Wednesday, November 23, 11

ERROR
KERNEL

Wednesday, November 23, 11

ERROR
KERNEL

Wednesday, November 23, 11

NODE 1 NODE 2

Wednesday, November 23, 11

Parental automatic supervision

\
// from within an actor

context.actor0f [MyActor]

transparent and automatic fault handling by design

Parental automatic supervision

Guardian Actor

ednesday, November 23, 11

Parental automatic supervision

Guardian Actor

Parental automatic supervision

Guardian Actor

Parental automatic supervision

Guardian Actor

- o/A | 3

Wednesday, November 23, 11

Supervision

-

C

N

def receive = {
case NewUser(name) =>

~

Stop
Resume
Restart
Escalate

lass MySupervisor extends Actor {
faultHandler = OneForOneStrategy({
case _: ActorKilledException =>
case _: ArithmeticException =>
case _: Exception =>
case _ =>
}
maxNrOfRetries = None,
withinTimeRange = None)

. = context.actor0Of[User] (name)

}

Wednesday, November 23, 11

Supervision

-

C

N

~

lass MySupervisor extends Actor {
faultHandler = AllForOneStrategy ({
case _: ActorKilledException => Stop
case _: ArithmeticException => Resume
case _: Exception => Restart
case _ => Escalate
}
maxNrOfRetries = None,
withinTimeRange = None)

def receive = {
case NewUser(name) =>

}

. = context.actor0Of[User] (name)

Wednesday, November 23, 11

Manage faillure

~

class FaultTolerantService extends Actor {
override def preRestart
reason: Throwable, message: Option[Any]) = {
... // clean up before restart
I3

override def postRestart(reason: Throwable) = {
..« // 1nit after restart
}

\} Y

Wednesday, November 23, 11

ARCHITECTURE

Spring ZeroMQ Camel AMQP
integration integration integration integration
Fault-tolerance
Remote -
Actor o
Supervision
Scalabllrty

Routed Clustered Cluster
Actors Actors Membership
Concurrency

[.] [s J [-] [W]

Durable Mailboxes

YPESAF
STACK
ADD-ONS

~
J

fee

e o

Wednesday, November 23, 11

http://akka.lo

http://typesafe.com
https://gist.github.com/ | 38823/

http://jonasboner.com/
http://jonasboner.com/
http://jonasboner.com/
http://jonasboner.com/
http://jonasboner.com/
http://jonasboner.com/

Wednesday, November 23, 11

