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[ he problem

[t 1s way too hard to build:

|. correct highly concurrent systems
2. truly scalable systems

3. fault-tolerant systems that self-heals

..using “'state-of-the-art” tools
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Introducing /
akka

Akka (Ahkka):

The name comes from the goddess In the Sami
mythology that represented all the wisdom and
beauty In the world.

't 1s also the name of a beautiful mountain In
Laponia in the north part of Sweden
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Vision

Simpler

Concurrency

Scalability

Fault-tolerance
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THE TOOLBOX..

. ~N
Fault-tolerance
Local Remote Ediilia
Actor Actor Detection
Supervision Supervision
~ N

Scalability CO RE
Routec Clustered Clustr SERVICES

Actors Actors Membership

N
J

Concurrency

Actors STM Agents Dataflow
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Akka

et the begin!




1a |<e AW ays

e Start an Actor: actorOf[AnActor].start()
* Safe
* Encapsulated state
*» One message at a time
* Asynchronous:
* bang ()
* Reply:
*self.reply (m )
e actor ! “message”
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using

Akka




Q Future
® Promise
@

Future with value
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lake aways

=S

* Use Futures when you need something in the
-uture without blocking
* Use onComplete
» Compose Futures
* for - comprehensions
* Check out the Futures utllities (firstCompletedOf
and much, much more) '
|

e —————————— —— E— —— p—
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ACtOors
Another snippet of




New AYarelgs




Name

(:appContext.actorOf[MyActor](“my—service") :)

Bind the actor to a name
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Deployment

deployed |

* |[f no deployment configuration exists then actoris |
deployed as local

* [he same system can be configured as distributed
without code change (even change at runtime)

* Write as local but deploy as distributed in the cloud
without code change |

x

-+ Allows runtime to dynamically and adaptively
change topology (

e —————————— e e p— — — -
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Deployment configuration

/akka { \

actor {
deployment A
/path/to/my-service {

router = "round-robin"
nr—-of—-instances = 3
remote {
nodes = ["wallace:2552", '"gromit:2552"]
I
¥

\_ /




[ he runtime provides

————

- * Decentralized P2P gossip-based cluster membership

 (dynamo-style w/ vector clocks, hand-off on fail-over
etc.)

* Automatic adaptive cluster rebalancing

* Automatic cluster-wide deployment

- *Highly available configuration service

* Automatic replication with automatic fail-over upon
node crash

" * [ransparent and user-configurable load-balancing

~*..and much more
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//rakka {

actor {
deployment {
/ping {}
/pong {
router = "round
nr—-of-instances
}
¥

—robin"
= 3

Akka
Cluster Node

~
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//rakka {

actor {
deployment {
/ping {}
/pong {
router = "round
nr—of—-instances
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f/rakka {

actor {
deployment {
/ping {}
/pong {
router = "round-robin"
nr—-of-instances = 3

“\\

\} v

r

Akka
Cluster Node
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fault-tolerance




...let’s take a
standard OO
application







.L‘.-‘ —

Which components have

' critically important state
l and

explicit error handling?
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NODE 1 NODE 2
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Parental automatic supervision

\
// from within an actor

context.actor0f [MyActor]

transparent and automatic fault handling by design




Parental automatic supervision

Guardian Actor
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Parental automatic supervision

Guardian Actor

- o/A | 3
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Supervision

-

C

N

def receive = {
case NewUser(name) =>

~

Stop
Resume
Restart
Escalate

lass MySupervisor extends Actor {
faultHandler = OneForOneStrategy({
case _: ActorKilledException =>
case _: ArithmeticException =>
case _: Exception =>
case _ =>
}
maxNrOfRetries = None,
withinTimeRange = None)

. = context.actor0Of[User] (name)

}
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Supervision
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~

lass MySupervisor extends Actor {
faultHandler = AllForOneStrategy ({
case _: ActorKilledException => Stop
case _: ArithmeticException => Resume
case _: Exception => Restart
case _ => Escalate
}
maxNrOfRetries = None,
withinTimeRange = None)

def receive = {
case NewUser(name) =>

}

. = context.actor0Of[User] (name)
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Manage faillure

~

class FaultTolerantService extends Actor {
override def preRestart
reason: Throwable, message: Option[Any]) = {
... // clean up before restart
I3

override def postRestart(reason: Throwable) = {
..« // 1nit after restart
}

\} Y
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ARCHITECTURE

Spring ZeroMQ Camel AMQP
integration integration integration integration
Fault-tolerance
Remote -
Actor o
Supervision
Scalabllrty

Routed Clustered Cluster
Actors Actors Membership
Concurrency

[ . ] [ s J [ - ] [W]

Durable Mailboxes

YPESAF
STACK
ADD-ONS

~
J

fee

e o
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http://akka.lo

http://typesafe.com
https://gist.github.com/ | 38823/



http://jonasboner.com/
http://jonasboner.com/
http://jonasboner.com/
http://jonasboner.com/
http://jonasboner.com/
http://jonasboner.com/

Wednesday, November 23, 11



