
Above the Clouds:
Introducing Akka

Fredrik Ekholdt
Typesafe

Email: fredrik.ekholdt@typesafe.com
Twitter : @ekhfre

Wednesday, November 23, 11

mailto:jonas@typesafe.com
mailto:jonas@typesafe.com

The problem

It is way too hard to build:
1. correct highly concurrent systems

2. truly scalable systems

3. fault-tolerant systems that self-heals

...using “state-of-the-art” tools

Wednesday, November 23, 11

Introducing

Wednesday, November 23, 11

Introducing

Akka (Áhkká):

The name comes from the goddess in the Sami
mythology that represented all the wisdom and

beauty in the world.

It is also the name of a beautiful mountain in
Laponia in the north part of Sweden

Wednesday, November 23, 11

Introducing

View from the summit

Wednesday, November 23, 11

Vision

Simpler

Concurrency

Scalability

Fault-tolerance

Wednesday, November 23, 11

CORE
SERVICES

THE TOOLBOX...

Wednesday, November 23, 11

The Actor...

Wednesday, November 23, 11

Behavior

State

Actor

Wednesday, November 23, 11

Event-
driven

Behavior

State

Actor

Wednesday, November 23, 11

Event-
driven

Behavior

State

Actor

Wednesday, November 23, 11

Event-
driven

Behavior

State

Actor

Wednesday, November 23, 11

Event-
driven

Behavior

State

Actor

Wednesday, November 23, 11

Event-
driven

Behavior

State

Actor

Wednesday, November 23, 11

Behavior

State

Actor

Wednesday, November 23, 11

Event-
driven

Behavior

State

Actor

Wednesday, November 23, 11

Akka Actors
Let the hakking begin!

Text

Wednesday, November 23, 11

•Create an Actor: class AnActor extends Actor
•Start an Actor: actorOf[AnActor].start()
•Safe

•Encapsulated state
•One message at a time

•Asynchronous:
•bang (!)

•Reply:
•self.reply (m)
•actor ? “message”

Take aways

Wednesday, November 23, 11

Akka Futures
without blocking

using

Wednesday, November 23, 11

Future
Promise

Future with value

Wednesday, November 23, 11

Future
Promise

Future with value

Wednesday, November 23, 11

Future
Promise

Future with value

Wednesday, November 23, 11

•Use Futures when you need something in the
Future without blocking

•Use onComplete
•Compose Futures

•for - comprehensions
•Check out the Futures utilities (firstCompletedOf

and much, much more)

Take aways

Wednesday, November 23, 11

Remote Actors
Another snippet of code...

Wednesday, November 23, 11

New Remote Actors

Wednesday, November 23, 11

appContext.actorOf[MyActor](“my-service”)

Name

Bind the actor to a name

Wednesday, November 23, 11

•Actor name is virtual and decoupled from how it is
deployed

•If no deployment configuration exists then actor is
deployed as local

•The same system can be configured as distributed
without code change (even change at runtime)

•Write as local but deploy as distributed in the cloud
without code change

•Allows runtime to dynamically and adaptively
change topology

Deployment

Wednesday, November 23, 11

akka {
 actor {
 deployment {
 /path/to/my-service {
 router = "round-robin"
 nr-of-instances = 3
 remote {

 nodes = ["wallace:2552", "gromit:2552"]
 }
 }
 }
 }
}

Deployment configuration

Wednesday, November 23, 11

•Decentralized P2P gossip-based cluster membership
(dynamo-style w/ vector clocks, hand-off on fail-over
etc.)

•Automatic adaptive cluster rebalancing
•Automatic cluster-wide deployment
•Highly available configuration service
•Automatic replication with automatic fail-over upon

node crash
•Transparent and user-configurable load-balancing
•...and much more

The runtime provides

Wednesday, November 23, 11

Akka Node

Wednesday, November 23, 11

Akka Node
val ping = actorOf[Ping](“ping”)
val pong = actorOf[Pong](“pong”)

pong ! Ball(ping)

Wednesday, November 23, 11

Akka Node
val ping = actorOf[Ping](“ping”)
val pong = actorOf[Pong](“pong”)

pong ! Ball(ping)

Ping Pong

Wednesday, November 23, 11

Akka Node

Akka
Cluster Node

Ping Pong

Wednesday, November 23, 11

Akka Node

Akka
Cluster Node

Akka
Cluster Node

Akka
Cluster Node

Akka
Cluster Node

Akka
Cluster Node

Ping Pong

Wednesday, November 23, 11

Akka
Cluster Node

Akka
Cluster Node

Akka
Cluster Node

Akka
Cluster Node

Akka
Cluster Node

Ping Pong

Wednesday, November 23, 11

akka {
 actor {
 deployment {
 /ping {}
 /pong {
 router = "round-robin"
 nr-of-instances = 3
 }
 }
 }
}

Akka
Cluster Node

Akka
Cluster Node

Akka
Cluster Node

Akka
Cluster Node

Akka
Cluster Node

Ping Pong

Wednesday, November 23, 11

akka {
 actor {
 deployment {
 /ping {}
 /pong {
 router = "round-robin"
 nr-of-instances = 3
 }
 }
 }
}

Akka
Cluster Node

Akka
Cluster Node

Akka
Cluster Node

Akka
Cluster Node

Akka
Cluster Node

Ping

Pong

Wednesday, November 23, 11

akka {
 actor {
 deployment {
 /ping {}
 /pong {
 router = "round-robin"
 nr-of-instances = 3
 }
 }
 }
}

Akka
Cluster Node

Akka
Cluster Node

Akka
Cluster Node

Akka
Cluster Node

Akka
Cluster Node

Ping

Pong

Pong

Pong
Wednesday, November 23, 11

Summing
up

Wednesday, November 23, 11

Let it crash
fault-tolerance

Wednesday, November 23, 11

...let’s take a
standard OO
application

Wednesday, November 23, 11

Wednesday, November 23, 11

Which components have
critically important state

and
explicit error handling?

Wednesday, November 23, 11

Wednesday, November 23, 11

Fault-tolerant
onion-layered
Error Kernel

Wednesday, November 23, 11

Error
Kernel

Wednesday, November 23, 11

Error
Kernel

Wednesday, November 23, 11

Error
Kernel

Wednesday, November 23, 11

Error
Kernel

Wednesday, November 23, 11

Error
Kernel

Wednesday, November 23, 11

Error
Kernel

Wednesday, November 23, 11

Node 1 Node 2

Wednesday, November 23, 11

// from within an actor
context.actorOf[MyActor]

transparent and automatic fault handling by design

Parental automatic supervision

Wednesday, November 23, 11

A

B

BarFoo

C

B
E

A

D

C

Guardian Actor

Parental automatic supervision

Wednesday, November 23, 11

A

B

BarFoo

C

B
E

A

D

C

Guardian Actor

/Foo

Parental automatic supervision

Wednesday, November 23, 11

A

B

BarFoo

C

B
E

A

D

C

Guardian Actor

/Foo

/Foo/A

Parental automatic supervision

Wednesday, November 23, 11

A

B

BarFoo

C

B
E

A

D

C

Guardian Actor

/Foo

/Foo/A

/Foo/A/B

Parental automatic supervision

Wednesday, November 23, 11

Supervision
class MySupervisor extends Actor {
 faultHandler = OneForOneStrategy({
 case _: ActorKilledException => Stop
 case _: ArithmeticException => Resume
 case _: Exception => Restart
 case _ => Escalate

 },
 maxNrOfRetries = None,
 withinTimeRange = None)

 def receive = {
 case NewUser(name) =>
 ... = context.actorOf[User](name)
 }
}

Wednesday, November 23, 11

Supervision
class MySupervisor extends Actor {
 faultHandler = OneForOneStrategy({
 case _: ActorKilledException => Stop
 case _: ArithmeticException => Resume
 case _: Exception => Restart
 case _ => Escalate

 },
 maxNrOfRetries = None,
 withinTimeRange = None)

 def receive = {
 case NewUser(name) =>
 ... = context.actorOf[User](name)
 }
}

AllForOneStrategy

Wednesday, November 23, 11

class FaultTolerantService extends Actor {
 ...
 override def preRestart(
 reason: Throwable, message: Option[Any]) = {
 ... // clean up before restart
 }
 override def postRestart(reason: Throwable) = {
 ... // init after restart
 }
}

Manage failure

Wednesday, November 23, 11

ARCHITECTURE

TYPESAFE
STACK

ADD-ONS

Wednesday, November 23, 11

Get it and learn more
http://akka.io

http://typesafe.com

https://gist.github.com/1388237

Wednesday, November 23, 11

http://jonasboner.com/
http://jonasboner.com/
http://jonasboner.com/
http://jonasboner.com/
http://jonasboner.com/
http://jonasboner.com/

EOF
Wednesday, November 23, 11

