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About me

• PhD, 2006, Computer Science, University of Aarhus, 
Denmark (Theory-stuff :)

• Software Engineer at Trifork 

–Web, JavaScript, Java, Ruby, Clojure, Mobile.

– Co-authoring a Dart book by Kresten Krab Thorup!

• Co-owner of a start-up, LessPainful, doing cloud- 
based automated testing for native mobile:                                   
http://www.lesspainful.com
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What is Dart?
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What is Dart?

• Three things
– A new programming language, supporting 

structured programming for the web.

– Set of tools supporting development with Dart.

– Open source project
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What is Dart?

• Three things
– A new programming language, supporting 

structured programming for the web.

– Set of tools supporting development with Dart.

– Open source project

• Important to remember:
– THIS IS A TECHNOLOGY PREVIEW                     

(don’t put it in production just yet).
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Who?
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Who?

• Language and VM expert team at Google, 
some highlights:
– Lars Bak (High-perf. VMs, Strongtalk, OOVM, 

Hotspot, V8,...)

– Gilad Bracha (Newspeak, Strongtalk, JLS, types...)

– Kasper Lund (CLDC HI, OOVM, V8, Spot, ...)
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Why?
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Why?
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• JavaScript is focused on flexibility+ease of use
– Hard to reason about the program structure.
– No direct support for modularity 

– Comparatively weak tool support.

– In the wild: unstructured, lang. mix, dependencies

• Security
– 3rd party code runs at same priviledge as ours
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In the wild: user experience
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Start-up performance is 
often really bad.
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Potential advantages of Dart
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Potential advantages of Dart
• Tool support

• Fairly “low ceremony” with (optional) types 

• Unified language

• Concurrency without “lock-and-pray”.

• Security (sandbox + capabilities)

• Performance

• Simplified library interoperability (“imports”)
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The Dart Programming Language
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Main language features
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Main language features

• Pure object-oriented dynamic programming 
language. Familiar syntax.

– Class-based single inheritance with interfaces.
– Implicit interfaces, factories.
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• Pure object-oriented dynamic programming 
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– Class-based single inheritance with interfaces.
– Implicit interfaces, factories.

• Optional static typing
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Main language features

• Pure object-oriented dynamic programming 
language. Familiar syntax.

– Class-based single inheritance with interfaces.
– Implicit interfaces, factories.

• Optional static typing

• Isolates: message-passing model for concurrency
– Isolates are single threaded. 

– basis for a capability-based security model
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Dart on server: typically on dartvm
Dart on client: dartvm in browser, JS in browser
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Let’s see it!
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Classes, interfaces, closures.
Optional types.

tirsdag den 22. november 11



More on Dart’s optional types
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More on Dart’s optional types
• Annotations don’t affect runtime semantics!
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More on Dart’s optional types
• Annotations don’t affect runtime semantics!
• Controversial: Type system is actually 

‘unsound’, e.g., co-variant generics.
• “Ergonomically incorrect”  - G. Bracha
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More on Dart’s optional types
• Annotations don’t affect runtime semantics!
• Controversial: Type system is actually 

‘unsound’, e.g., co-variant generics.
• “Ergonomically incorrect”  - G. Bracha

• Reified types: type args to constructors, 
interfaces.
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More on Dart’s optional types
• Annotations don’t affect runtime semantics!
• Controversial: Type system is actually 

‘unsound’, e.g., co-variant generics.
• “Ergonomically incorrect”  - G. Bracha

• Reified types: type args to constructors, 
interfaces.

• “Checked mode”: runtime checks of 
annotations.
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Ergonomically incorrect
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Ergonomically incorrect
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public static <T extends Object & Comparable<? super T>> 
	 	 	 	 	 T max(Collection<? extends T> coll) {
	 ...
}
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Ergonomically incorrect
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public static <T extends Object & Comparable<? super T>> 
	 	 	 	 	 T max(Collection<? extends T> coll) {
	 ...
}

Comparable max(List<Comparable> list) {
  ...
}

vs
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Isolates
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• Lightweight units of execution.

• Runs in their own address space like processes.

• All communication takes place via message passing

• Each isolate is “sequential”/single threaded

– Dart supports concurrent execution by spawning 
multiple isolates.

• Only message queues shared, no locks needed!
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Isolates
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More on ports

• Receive ports accept and enqueue incoming 
messages

– An isolate is born with a receive port.

– Can also be created on demand.

• A send port allows sending to a certain receive port
– It is an unforgeable, transferrable capability

– Basis for sandboxing untrusted code.
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Isolates

Let’s see it!

tirsdag den 22. november 11



Performance

• Now, DartVM isn’t generally faster than V8.

• But Dart is likely to go faster than V8 will 
– due to simplified semantics of Dart compared to 

JavaScript.
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Snapshots

• Serialized heap after loading the application

• Startup can be more than 10x faster
• Example:
– Loading 54173 lines of Dart code takes 640 

ms
– Loading same application from a snapshot 

takes 60 ms
•
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Open source project

• The Dart web site: http://dartlang.org
– Dart language specification

– Dart language tutorial + articles

• The Dart project: http://dart.googlecode.com
• Libraries and code samples
• Dart virtual machine+ JavaScript compiler(s)
• http://try-dart-lang.appspot.com
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DART IS NOT DONE

• Give feedback by joining the discussion!
– Some of the features aren’t implemented yet...

– Rest arguments and enums?

– Reflection support?
– Isolates are kind-of low-level...
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Watch out for the 
upcoming Dart book!

Thanks.
Questions?
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Surprisingly Unsurprising?

23

tirsdag den 22. november 11



Surprisingly Unsurprising?
• Why isn’t Dart more like:

• Clojure, Erlang, Haskell, Scala, <exotic language X>
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Surprisingly Unsurprising?
• Why isn’t Dart more like:

• Clojure, Erlang, Haskell, Scala, <exotic language X>

• Deliberately designed to be familar:
• developed with massive-adoption as primary goal. 
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Surprisingly Unsurprising?
• Why isn’t Dart more like:

• Clojure, Erlang, Haskell, Scala, <exotic language X>

• Deliberately designed to be familar:
• developed with massive-adoption as primary goal. 

• Also, focus on enabling high performance and 
powerful tooling.
+ Must compile to efficient JavaScript.
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