

Karl Krukow,

Software Engineer, Trifork

kkr@trifork.com

an introduction

tirsdag den 22. november 11

mailto:kkr@trifork.com
mailto:kkr@trifork.com

About me

• PhD, 2006, Computer Science, University of Aarhus,
Denmark (Theory-stuff :)

• Software Engineer at Trifork

–Web, JavaScript, Java, Ruby, Clojure, Mobile.

– Co-authoring a Dart book by Kresten Krab Thorup!

• Co-owner of a start-up, LessPainful, doing cloud-
based automated testing for native mobile:
http://www.lesspainful.com

tirsdag den 22. november 11

http://www.lesspainful.com
http://www.lesspainful.com

What is Dart?

3

tirsdag den 22. november 11

What is Dart?

• Three things
– A new programming language, supporting

structured programming for the web.

– Set of tools supporting development with Dart.

– Open source project

3

tirsdag den 22. november 11

What is Dart?

• Three things
– A new programming language, supporting

structured programming for the web.

– Set of tools supporting development with Dart.

– Open source project

• Important to remember:
– THIS IS A TECHNOLOGY PREVIEW

(don’t put it in production just yet).

3

tirsdag den 22. november 11

Who?

4

tirsdag den 22. november 11

Who?

• Language and VM expert team at Google,
some highlights:
– Lars Bak (High-perf. VMs, Strongtalk, OOVM,

Hotspot, V8,...)

– Gilad Bracha (Newspeak, Strongtalk, JLS, types...)

– Kasper Lund (CLDC HI, OOVM, V8, Spot, ...)

4

tirsdag den 22. november 11

Why?

5

tirsdag den 22. november 11

Why?

5

• JavaScript is focused on flexibility+ease of use
– Hard to reason about the program structure.
– No direct support for modularity

– Comparatively weak tool support.

– In the wild: unstructured, lang. mix, dependencies

• Security
– 3rd party code runs at same priviledge as ours

tirsdag den 22. november 11

In the wild: user experience

6

tirsdag den 22. november 11

6

tirsdag den 22. november 11

6

tirsdag den 22. november 11

6

Start-up performance is
often really bad.

tirsdag den 22. november 11

Potential advantages of Dart

7

tirsdag den 22. november 11

Potential advantages of Dart
• Tool support

• Fairly “low ceremony” with (optional) types

• Unified language

• Concurrency without “lock-and-pray”.

• Security (sandbox + capabilities)

• Performance

• Simplified library interoperability (“imports”)

7

tirsdag den 22. november 11

The Dart Programming Language

8

tirsdag den 22. november 11

Main language features

9

tirsdag den 22. november 11

Main language features

• Pure object-oriented dynamic programming
language. Familiar syntax.

– Class-based single inheritance with interfaces.
– Implicit interfaces, factories.

9

tirsdag den 22. november 11

Main language features

• Pure object-oriented dynamic programming
language. Familiar syntax.

– Class-based single inheritance with interfaces.
– Implicit interfaces, factories.

• Optional static typing

9

tirsdag den 22. november 11

Main language features

• Pure object-oriented dynamic programming
language. Familiar syntax.

– Class-based single inheritance with interfaces.
– Implicit interfaces, factories.

• Optional static typing

• Isolates: message-passing model for concurrency
– Isolates are single threaded.

– basis for a capability-based security model

9

tirsdag den 22. november 11

Dart on server: typically on dartvm
Dart on client: dartvm in browser, JS in browser

tirsdag den 22. november 11

Let’s see it!

11

Classes, interfaces, closures.
Optional types.

tirsdag den 22. november 11

More on Dart’s optional types

12

tirsdag den 22. november 11

More on Dart’s optional types
• Annotations don’t affect runtime semantics!

12

tirsdag den 22. november 11

More on Dart’s optional types
• Annotations don’t affect runtime semantics!
• Controversial: Type system is actually

‘unsound’, e.g., co-variant generics.
• “Ergonomically incorrect” - G. Bracha

12

tirsdag den 22. november 11

More on Dart’s optional types
• Annotations don’t affect runtime semantics!
• Controversial: Type system is actually

‘unsound’, e.g., co-variant generics.
• “Ergonomically incorrect” - G. Bracha

• Reified types: type args to constructors,
interfaces.

12

tirsdag den 22. november 11

More on Dart’s optional types
• Annotations don’t affect runtime semantics!
• Controversial: Type system is actually

‘unsound’, e.g., co-variant generics.
• “Ergonomically incorrect” - G. Bracha

• Reified types: type args to constructors,
interfaces.

• “Checked mode”: runtime checks of
annotations.

12

tirsdag den 22. november 11

Ergonomically incorrect

13

tirsdag den 22. november 11

Ergonomically incorrect

13

public static <T extends Object & Comparable<? super T>>
	 	 	 	 	 T max(Collection<? extends T> coll) {
	 ...
}

tirsdag den 22. november 11

Ergonomically incorrect

13

public static <T extends Object & Comparable<? super T>>
	 	 	 	 	 T max(Collection<? extends T> coll) {
	 ...
}

Comparable max(List<Comparable> list) {
 ...
}

vs

tirsdag den 22. november 11

Isolates

14

• Lightweight units of execution.

• Runs in their own address space like processes.

• All communication takes place via message passing

• Each isolate is “sequential”/single threaded

– Dart supports concurrent execution by spawning
multiple isolates.

• Only message queues shared, no locks needed!

tirsdag den 22. november 11

Isolates

15

tirsdag den 22. november 11

More on ports

• Receive ports accept and enqueue incoming
messages

– An isolate is born with a receive port.

– Can also be created on demand.

• A send port allows sending to a certain receive port
– It is an unforgeable, transferrable capability

– Basis for sandboxing untrusted code.

16

tirsdag den 22. november 11

17

Isolates

Let’s see it!

tirsdag den 22. november 11

Performance

• Now, DartVM isn’t generally faster than V8.

• But Dart is likely to go faster than V8 will
– due to simplified semantics of Dart compared to

JavaScript.

18

tirsdag den 22. november 11

Snapshots

• Serialized heap after loading the application

• Startup can be more than 10x faster
• Example:
– Loading 54173 lines of Dart code takes 640

ms
– Loading same application from a snapshot

takes 60 ms
•

19

tirsdag den 22. november 11

Open source project

• The Dart web site: http://dartlang.org
– Dart language specification

– Dart language tutorial + articles

• The Dart project: http://dart.googlecode.com
• Libraries and code samples
• Dart virtual machine+ JavaScript compiler(s)
• http://try-dart-lang.appspot.com

20

tirsdag den 22. november 11

http://dartlang.org
http://dartlang.org
http://dart.googlecode.com
http://dart.googlecode.com
http://try-dart-lang.appspot.co
http://try-dart-lang.appspot.co

DART IS NOT DONE

• Give feedback by joining the discussion!
– Some of the features aren’t implemented yet...

– Rest arguments and enums?

– Reflection support?
– Isolates are kind-of low-level...

21

tirsdag den 22. november 11

22

Watch out for the
upcoming Dart book!

Thanks.
Questions?

tirsdag den 22. november 11

Surprisingly Unsurprising?

23

tirsdag den 22. november 11

Surprisingly Unsurprising?
• Why isn’t Dart more like:

• Clojure, Erlang, Haskell, Scala, <exotic language X>

23

tirsdag den 22. november 11

Surprisingly Unsurprising?
• Why isn’t Dart more like:

• Clojure, Erlang, Haskell, Scala, <exotic language X>

• Deliberately designed to be familar:
• developed with massive-adoption as primary goal.

23

tirsdag den 22. november 11

Surprisingly Unsurprising?
• Why isn’t Dart more like:

• Clojure, Erlang, Haskell, Scala, <exotic language X>

• Deliberately designed to be familar:
• developed with massive-adoption as primary goal.

• Also, focus on enabling high performance and
powerful tooling.
+ Must compile to efficient JavaScript.

23

tirsdag den 22. november 11

