Patterns
for the
People

Kevlin Henney
kevilingcurbralan. com
@RevilinHenney

FIRMITAS
UTILITAS
VENUSTAS

VITRUVIUS

Habitability is the characteristic of
source code that enables programmers,
coders, bug-fixers, and people coming
to the code later in its life to
understand its construction and
intentions and to change it comfortably
and confidently. [...] Habitability makes
a place livable, like home. And this is
what we want in software — that
developers feel at home, can place their
hands on any item without having to
think deeply about where it is.

&%

AN

¢ 2

>
y

z
=
¥

-, S $\\\
NN,

— :

N R ,
ST 2 ve
’I/’////‘J/&///'/ -

Un missionnaire du moyen age raconte qu'il avait trouvé le point
ou le ciel et la Terre se touchent...

o WAL
S

s

g

e,
R0,
e s
@Q&Mﬁ%«wﬁ%&s o @ %.wmﬂ&%.e. 2

\u
r
Md
S W
e RO i 2
R .%&M%%ﬁ@%&%u@%

Jupiter

%@&ﬁ@ﬁwﬂm&wﬁ@%«aﬁ A

o

e g
b

() \ww * o . o
O =\
@NM v_?\. m |
5 A< g !
5 w
a/':\t\\m)
> ._»Il e o
% /
/

»
f

"/ hat which is overdesigned, too highly
specific, anticipates outcome; the
anticipation of outcome guarantees, if
not failure, the absence of grace.

William Gibson

Failuve is a far better teacher
than success.

Philip Delves Rroughton

hetp://www.ft.com/ems/s/O/f335508-fO10-11e0-hc9d-0014 4feab49a.hitm!

I™M JUST QUTS|DE ToWN, S0 I sHOUWD
BE THERE [N FIFTEEN MINUTES.
)

ACTUALLY ITS LOOKING
MORE LIKE SIx DAYS.
n

NO, WAIT, THIRTY SECONDS.

THE AUTHOR OF THE WINDOWS FILE
COPY DIALOG VISITS SOME FRIENDS.

JF you want to learn how to build a
house, build a house. Don't ask
angbody, just build a house.

Chvistopher Y4/alken

It has become commonplace to suggest that failure is good for
entrepreneurs. In this view, failure that comes early in a founder's
career can teach them important lessons about doing business
and harden them up for the next start-up attempt.

David Storey, "Lessons that are wasted on entrepreneurs"

In the UK, the evidence is that novices are neither more nor less
likely to have a business that either grows or survives than
experienced founders. In Germany, where much more extensive
statistical work has been undertaken, it is clear that those whose
business had failed had worse-performing businesses if they
restarted than did novices.

David Storey, "Lessons that are wasted on entrepreneurs"

In short, the assumption that entrepreneurs use the lessons of
their own experience to improve their chances of creating a
series of profitable businesses is not borne out by the evidence.
Success in business remains, as in life, something of a lottery.

David Storey, "Lessons that are wasted on entrepreneurs"

The assertion that we can learn something from every
failure is often heard. This study by Earl Miller and his
colleagues Mark Histed and Anitha Pasupathy of the
Massachusetts Institute of Technology's Picower Institute
for Learning and Memory tests that notion by looking at the
learning process at the level of neurons. The study shows

how brains learn more effectively from success than from
failure.

http://www.asfct.org/documents/journal/2009-11/Vol1-2-9.pdf

Brain cells keep track of whether recent behaviours were
successful or not. When a certain behaviour was successful,
cells became more finely tuned to what the animal was
learning. After a failure, there was little or no change in the
brain — nor was there any improvement in behaviour.

http://www.asfct.org/documents/journal/2009-11/Vol1-2-9.pdf

Anti-patterns don't provide a resolution of forces as
patterns do, and they are dangerous as teaching
tools: good pedagogy builds on positive examples
that students can remember, rather than negative
examples. Anti-paiterns might be good diagnostic
tools to understand system problems.

James Coplien, Software Patterns

Wise men profit more from fools than
fools from wise men: for the wise men
shun the mistakes of fools, but fools do

not imitate the successes of the wise.
Cato the Elder

-_—
——

SOF I WA RE One of the hali;na;;;
ARCHITECTUR E of architectural design

PERSPECTIVES ON AN EMERGING DISCIPLINE is the use of idiomatic
MARY SHAW DAVID GARLAN patterns of system
organization. Many of
these patterns — or
architectural styles —
have been developed
over the years as
system designers
recognized the value
of specific
organizational
principles and o
structures for certain
classes of software.

The
Timeless Way of
Building

Christopher Alexander

We know that every pattern is an instruction of the general form:
context — conflicting forces — configuration

So we say that a pattern is good, whenever we can show that it
meets the following two empirical conditions:

1. The problem is real. This means that we can express the
problem as a conflict among forces which really do occur
within the stated context, and cannot normally be resolved
within that context. This is an empirical question.

2. The configuration solves the problem. This means that when
the stated arrangement of parts is present in the stated
context, the conflict can be resolved, without any side effects.
This is an empirical question.

1
H

L]

i

] n
H

[=)
s e—
] -
H —
7 (3=}
| O
L

i

L

e sttt

otyle is the art
of getting
yourself out of
the way, not
putting yourself
in 1it.

David Hare

D

- SOFTWARE DESIGN PATTERNS

PATTERN-ORIENTED
SOFTWARE
ARCHITECTURE

On Patterns and Pattern Languages

Frank Buschmann
Kevlin Henney
Douglas C. Schmidt

ted Material

The form used for a pattern
description matters a great deal to
both pattern authors and readers. It
defines a vehicle for presentation,
along with the perspective and bias
that can bring. Thus, although in
one sense the choice of form can be
considered arbitrary, in another
sense it is anything but: the essence
of a good pattern can be considered
independent of any description of it,
but the description frames how the
pattern will be perceived.

PATTERN-ORIENTED
SOFTWARE
ARCHITECTURE

On Patterns and Pattern Languages

Frank Buschmann
Kevlin Henney
Douglas C. Schmidt

A pattern’s audience is ultimately
always human. Although a developer
may support application of a
software pattern solution through
libraries and generators, it is the
developer and not the technology
that is aware of the pattern. A
pattern is more than just a solution
structure, so its audience must also
have a sense of the context, the
forces, and the consequences that
are associated with a solution.

S
s ’eJ' }-a- -"l'AS?-

;
JOES "Am K 3
A i
5 =
e TN P .

5 108

AR R

[

[

Template Collecting m Pluggahle
Method Selector

Parameter

SOFTWARE DESIGN PATTERNS

PATTERN-ORIENTED

SOFTWARE

ARCHITECTURE

A Pattern Language for
Distributed Computing

Copyrighted Material

Frank Buschmann
Kevlin Henney
Douglas C. Schmidt

Part IT

=
S

Tk @ N -

sonannaanaana

AIBUOXY ooimim o il s i s i

Warchouse Management Process Control

System Scope
Warehouse Management Process Control

Baseline Architecture
Architecture Context .
Partitioning the Big Ball of Mud
Decomposing the Layers .
Accessing Domain Object Fumuommv
Bridging the Network

@
&

NNNND QD aa
3IINBIBR 384

6 Separating User Interfaces
7 Distributing Functionality 5 oy ”
8 Supporting Concurrent Domain Object Access 82
9 Achieving Scalable Concurrency o~ 85
10 Crossing the Object-Or len(ed/Re]anolnl Dl\’x(lr 87
11 Configuring Domain Objects at Runtime 89
12 Baseline Architecture Summary 90
6 Communication Middleware 95
6.1 A Middleware Architecture for Distributed
SYstems ... ciee e v s 96
6.2 Structuring the Internal Design of the
Middleware 100
6.3 Encapsulating Low-level System Mednmsms 103
6.4 Demultiplexing ORB Core Events 105
6.5 Managing ORB Connections 108
6.6 Enhancing ORB Scalability 111
6.7 Implementing a Synchronized Request Queue 114
6.8 Interchangeable Internal ORB Mechanisms 116
Table of Contents ix
60 Consolidating ORB Strategies 118
6.10 Dynamic Configuration of ORBs 121
6.11 Communication Middleware Summary 124
7 Warehouse Topology 129
7.1 Warehouse Topology Baseline 130
7.2 Representing Hierarchical Storage 131
7.3 Navigating the Storage Hierarchy 133
Modeling Storage Properties 135
Varying Storage Behavior 137
Realizing Global Functionality 140
Traversing the Warehouse Topology 142
Supporting Control Flow Extensions 144
Connecting to the Database , 146
Maintaining In-Memory Storage D:\(a 147
Configuring the Warehouse Topology 149
Detailing the Explicit Interface 151
Warehouse Topology Summary 153
8 The Story Behind The Pattern Story 157

History rarely happens
in the right order or
at the right time, but
the job of a historian
is to make it appear
as if it did.

James Burke

Patterns Form v, 283

portion from the grammar of our cxample pattern language for re-
quest handling, derived from the pattemn sequences presented above:

@ —° (COMMAND — EXPLICIT INTERFACE —°
(MEMENTO —° COMPOSITE —° COMMAND PROCESSOR —
COLLECTIONS FOR STATES — STRATEGY — NULL OBJECT)
| (composTE —° MEMENTO)

SOFTWARE DESIGN PATTERNS

A BNF-derived notation [EBNF96), as used for specifying the syntax
of programm

grammar of a
PATTERN-ORIENTED e 208 A ——

COMMAND
lowed by The portion of our pattern language for request handling outlined
s 0 F TwA R E followed t above could be represented as follows using the ‘railroad notation’
POSITE, w]
which if — e
which m Command
ARCHITECTURE o 4 e ——
fallowed t Mor -
MENTO. lu
On Patterns and Pattern Languages

(Composta ¢

i

Graphical nof (Gampente)
e (G- CED-CED

which visuall Object_/ Staton Procsasee - 2

design [CzEi0 l ,hm_hj

C
I m m language for
root concept i TgT— 1

as whether t

tional. In bor
The preferences of pattern language authors or the demands of their
target audience determine the specific expression of a grammar that

confused witt

Frank Buschmann
concepts via ¢

Kevlin Henney

Another grapl works best—whether a list of pattem sequences, formal or semi-
; ailroad’ note 5 i cribi :
Douglas C. Schmidt ‘railroad’ note formal prose, or a graphical form of describing grammar rules, and
since the 197 whether interwoven with the pattem descriptions or scparate. For ex-
in particular ample, the pattem language for distributed computing from POSA4

expresses grammar rules in prose, interwoven with the pattern de-
scriptions [POSA4|. This option has been chosen by most pattem lan-
guages in the software area, from design-centric pattem languages
[VSW02| [Fow02] [HoWo03| [VKZ04| to pattern languages for develop-
ment process and organization, and project and people management
[Ker95| [Cun96] [CoHao4].

Regardless of which grammar form is cheeen, however, it is important
that documented pattem languages actually offer guidance on the is-
Copyrighted Material sue of meaningful paths through a language. Otherwise, it is hard to
avoid the selection of ill-formed pattern sequences that create funda-
mentally broken software. The set of sensible sequences through a lan-
guage is part of the language and not something accidental or separate.
Thus making the grammars of pattem languages mare explicit is one
method for supporting their appropriate use. However, we must also

recognize some practical limitations in this endeavor: the grammar for

CHOOSE YOUR OWN ADVENTURE ™ |

YOU'RE THE STAR OF THE STORY!
CHOOSE FROM 40 POSSIBLE ENDINGS

THECAVE
OF TIME

BY EDWAKD PACKARD

A ® AL B AR Mok Tl

ILLUSTRATED BY PALL GRANGLEK

http://upload.wikimedia.org/wikipedia/en/f/f0/Cave_of_time.jpg

2

You now realise that the framework needs a logging facility for requests, and wonder how
logging functionality can be parameterized so that users of the framework can choose how
they wish to handle logging, rather than the logging facility being hard-wired.

If you wish to use inheritance to support variations in
housekeeping functionality, turn to 7.

Otherwise if you prefer the use of delegation, turn to 3.

James Siddle
"Choose Your Own Architecture" — Interactive Pattern Storytelling

1: Initial
context

Include a transparent
logging policy?
Support

compound
requests?

3: STRATEGY

7: COMPOSITE e
COMMAND 8: The End
(inc. step 14) (No chanae)
Transparent handling §
of missing strategy? !
Support
compound 7: The End
requests? (Compound
requests)
Yes

11: COMPOSITE No
COMMAND
i | 12: The End
(inc. step 14) (Transparent
Support i logging policy.)

compaund 11: The End
requests? {Transparent logging
paolicy; compound
requests)

5: COMPOSITE
COMMAND

(inc. step 14) No
T 13: The End
L (Transparent [0gging
5: The End palicy; optional
Transparent logging logging)
paolicy; optional

logging; compound
requests)

