
“Hold this for a moment”
Real-world queuing strategies

David Dawson
Director of Technology

Marcus Kern
VP, Technology

Powerful mobile technology

that puts ideas in motion – an

mCMS and a mobile campaign

platform available for both: self-

service or managed service.

VELTI
PLATFORMS

The complete mobile

engagement solution. We help

brands progress along their

mobile roadmap, from fast

growth pilots to optimisation of

current assets and revenue

growth.

MOBILE

MARKETING
Cultivate relationships that build

excitement through fun and

interesting experiences they want

to participate in. From on-pack

promos to premium competitions.

LARGE SCALE

CAMPAIGNS
Rewards based performance

marketing, aimed at increasing

customer lifetime value,

revenue growth and acquisition

of insightful consumer analytics.

We provide both the

programme and loyalty

fulfillment.

LOYALT
Y

MCRM

We build your mCRM engine that

builds opt in customers into a

mobile database and pushes it

through the measurement tool so

we can show you what you spend

and what you gain.

The complete mobile advertising

solution. Our own ad network &

exchange, equipped with

dynamic “real time” analytics of

all your mobile activity using our

Visualise tool, all under one

roof.

VELTI MEDIA

Our instantly available predictive

analysis and personalisation tool

provides a single view of your

brand from all your dispersed data

points and overlays sales data in

real time so you can manage your

mobile campaigns “in action”.

BRAND BLOTTER

WHAT DO

WE DO ?

3 | © 2013 Velti @ GOTO Zurich

Velti Technologies

• Erlang

• RIAK & leveldb

• Redis

• Ubuntu

• Ruby on Rails

• Java

• Node.js

• MongoDB

• MySQL

4 | © 2013 Velti @ GOTO Zurich

Two parts to this story

• Queuing Strategies

• Optimizing hardware

5 | © 2013 Velti @ GOTO Zurich

Building a Robust Queue

Q Workers Q

• Reliable + Replicated

• Scheduled jobs + Retries

• High performance (>10,000 tx/sec)

• Multiple producers and consumers (> 100)

• Easy to debug + Operations friendly

Sender Receiver

Q

Producers Consumers

6 | © 2013 Velti @ GOTO Zurich

~

Test Harness

Connection pool

Reporting thread

Configuration

Producer threads

Consumer

threads

Harness

Mysql + lock

Mysql + Redis

Mysql

Implementations

• Built using Jruby
– Fast (Hotspot)

– Threads without the GIL

• Pluggable design
– Multiple implementations

• Configurable variables
– Batch size

– Number of Producers and

Consumers

– Number of itterations

• Reporting

7 | © 2013 Velti @ GOTO Zurich

Implementation #1

• Mysql only (v5.5) percona

• Innodb (xtradb)

• Replication

• 1 x table (‘queue’)

– Id (primary key, auto_inc, int)

– Worker_id (int)

– Process_at (datetime)

– Payload (varchar)

– Index (worker_id, process_at)

• Dedicated hardware

– Harness: HP DL365 (12 cores)

– Mysql: HP DL365 (12 cores)

8 | © 2013 Velti @ GOTO Zurich

Implementation #1

Insert into queue (worker_id, process_at, payload)

values (0, ’2012-01-01 01:01:00’, ’{ json}’)

Update queue set worker_id=123 where

worker_id=0 and process_at <= now() limit 10

Select * from queue where worker_id=123

Update queue set worker_id=-1 where id=2

Update queue set worker_id=-1 where id=3

Insert into queue (worker_id, process_at, payload)

values (0, ’2012-01-01 01:01:00’, ’{ json}’)

 Multiple write operations Batched update / read operations

id worker_id process_at payload

1 -1 2012-01-01 01:01:00 { json }

id worker_id process_at payload

1 -1 2012-01-01 01:01:00 { json }

2 0 2012-01-01 01:01:00 { json }

id worker_id process_at payload

1 -1 2012-01-01 01:01:00 { json }

2 0 2012-01-01 01:01:00 { json }

3 0 2012-01-01 01:01:00 { json }

id worker_id process_at payload

1 -1 2012-01-01 01:01:00 { json }

2 123 2012-01-01 01:01:00 { json }

3 123 2012-01-01 01:01:00 { json }

id worker_id process_at payload

1 -1 2012-01-01 01:01:00 { json }

2 -1 2012-01-01 01:01:00 { json }

3 123 2012-01-01 01:01:00 { json }

id worker_id process_at payload

1 -1 2012-01-01 01:01:00 { json }

2 -1 2012-01-01 01:01:00 { json }

3 -1 2012-01-01 01:01:00 { json }

9 | © 2013 Velti @ GOTO Zurich

Implementation #1

10 | © 2013 Velti @ GOTO Zurich

Implementation #1

11 | © 2013 Velti @ GOTO Zurich

Implementation #1

12 | © 2013 Velti @ GOTO Zurich

Implementation #1

13 | © 2013 Velti @ GOTO Zurich

Implementation #1

0"

5000"

10000"

15000"

20000"

25000"

00
:0
0"

00
:1
5"

00
:3
0"

00
:4
5"

01
:0
0"

01
:1
5"

01
:3
0"

01
:4
5"

02
:0
0"

02
:1
5"

02
:3
0"

02
:4
5"

03
:0
0"

03
:1
5"

03
:3
0"

03
:4
5"

04
:0
0"

04
:1
5"

04
:3
0"

04
:4
5"

05
:0
0"

Tr
an
sa
c/
o
n
s"
p
e
r"
se
co
n
d
"

Time"[mm:ss]"

Mode"1"queue"'pop<on'"with"varying"Producer"levels"

1"Producer"

10"Producers"

30"Producers"

50"Producers"

14 | © 2013 Velti @ GOTO Zurich

Implementation #2

• Same Mysql setup as implementation #1

• Although we wrap a lock around the point of

most contention (batch update)

– Select get_lock(str, timeout)

– Select release_lock(str)

15 | © 2013 Velti @ GOTO Zurich

Implementation #2 (mysql + Lock)

Insert into queue (worker_id, process_at, payload)

values (0, ’2012-01-01 01:01:00’, ’{ json}’)
Update queue set worker_id=123 where

worker_id=0 and process_at > now() limit 10

Select * from queue where worker_id=123

Update queue set worker_id=-1 where id=2

Update queue set worker_id=-1 where id=3

Insert into queue (worker_id, process_at, payload)

values (0, ’2012-01-01 01:01:00’, ’{ json}’)

 Multiple write operations Batched update / read operations

id worker_id process_at payload

1 -1 2012-01-01 01:01:00 { json }

id worker_id process_at payload

1 -1 2012-01-01 01:01:00 { json }

2 0 2012-01-01 01:01:00 { json }

id worker_id process_at payload

1 -1 2012-01-01 01:01:00 { json }

2 0 2012-01-01 01:01:00 { json }

3 0 2012-01-01 01:01:00 { json }

id worker_id process_at payload

1 -1 2012-01-01 01:01:00 { json }

2 123 2012-01-01 01:01:00 { json }

3 123 2012-01-01 01:01:00 { json }

id worker_id process_at payload

1 -1 2012-01-01 01:01:00 { json }

2 -1 2012-01-01 01:01:00 { json }

3 123 2012-01-01 01:01:00 { json }

id worker_id process_at payload

1 -1 2012-01-01 01:01:00 { json }

2 -1 2012-01-01 01:01:00 { json }

3 -1 2012-01-01 01:01:00 { json }

Select get_lock(‘queue’,-1)

Select release_lock(‘queue’)

16 | © 2013 Velti @ GOTO Zurich

Implementation #2

17 | © 2013 Velti @ GOTO Zurich

Implementation #2

0"

5000"

10000"

15000"

20000"

25000"

00
:0
0"

00
:1
5"

00
:3
0"

00
:4
5"

01
:0
0"

01
:1
5"

01
:3
0"

01
:4
5"

02
:0
0"

02
:1
5"

02
:3
0"

02
:4
5"

03
:0
0"

03
:1
5"

03
:3
0"

03
:4
5"

04
:0
0"

04
:1
5"

04
:3
0"

04
:4
5"

05
:0
0"

Tr
an
sa
c/
o
n
s"
p
er
"s
ec
o
n
d
"

Time"[mm:ss]"

Mode"2"queue"'pop<on'"with"varying"Producer"levels"

1"Producer"

10"Producers"

30"Producers"

50"Producers"

18 | © 2013 Velti @ GOTO Zurich

Implementation #3

• Same Mysql setup as implementation #1

• 1 x table (‘queue’)

– Id (primary key, auto_inc, int)

– Status(enum)

– Process_at (datetime)

– Payload (varchar)

• 1 x Redis using the following data structures

– SortedSet (range query, schedule jobs)

– Queue (fast push / pop sematics)

• Dedicated hardware

– Harness: HP DL365 (12 cores)

– Mysql + Redis: HP DL365 (12 cores)

19 | © 2013 Velti @ GOTO Zurich

Implementation #3

Insert into queue (worker_id, process_at, payload)

values (0, ’2012-01-01 01:01:00’, ’{ json}’)

Update queue set status=‘working’ where id in (2,3)

Update queue set status=‘finished’ where id = 2
Insert into queue (worker_id, process_at, payload)

values (0, ’2012-01-01 01:01:00’, ’{ json}’)

 Multiple write operations Batched update / read operations

id status process_at payload

1 ‘finished’ 2012-01-01 01:01:00 { json }

id status process_at payload

1 ‘finished’ 2012-01-01 01:01:00 { json }

2 ‘pending’ 2012-01-01 01:01:00 { json }

id status process_at payload

1 ‘finished’ 2012-01-01 01:01:00 { json }

2 ‘pending’ 2012-01-01 01:01:00 { json }

3 ‘pending’ 2012-01-01 01:01:00 { json }

id status process_at payload

1 ‘finished’ 2012-01-01 01:01:00 { json }

2 ‘working’ 2012-01-01 01:01:00 { json }

3 ‘working’ 2012-01-01 01:01:00 { json }

id status process_at payload

1 ‘finished’ 2012-01-01 01:01:00 { json }

2 ‘finished’ 2012-01-01 01:01:00 { json }

3 ‘working’ 2012-01-01 01:01:00 { json }

id status process_at payload

1 ‘finished’ 2012-01-01 01:01:00 { json }

2 ‘finished’ 2012-01-01 01:01:00 { json }

3 ‘finished’ 2012-01-01 01:01:00 { json }

RedisQueue.push(2, ‘2012-01-01 01:01:00’)

RedisQueue.push(3, ‘2012-01-01 01:01:00’)

RedisQueue.pop(‘2012-01-01 01:01:00’ , 10)

Update queue set status=‘finished’ where id = 2

20 | © 2013 Velti @ GOTO Zurich

Implementation #3

queue_name = ‘queue’ + scheduled_time

rpush(queue_name, id_of_mysql_insert)

zadd(‘q_set’, scheduled_time, queue_name)

queue_name = redis.zrangebyscore('q_set', 0, current_time, :limit => [0,1])

Item = lpop(queue_name)

If item.nil? Zrem(‘q_set’, queue_name)

• Redis Sorted Sets O(log N) complexity

– Zadd/ zrangebyscore /zrem

– Used to store the name of the queue and

when it should be processed

• Redis Queues O(1) complexity

– Rpush / lpop

– User to store the items that need to be

processed

RedisQueue.push

RedisQueue.pop

future

Queues Sorted Set

now

21 | © 2013 Velti @ GOTO Zurich

Implementation #3

22 | © 2013 Velti @ GOTO Zurich

Implementation #3

23 | © 2013 Velti @ GOTO Zurich

Summarize Results

• Simplest Option

• 1 Moving part

• Easy to diagnose

• Tried and tested

• Prone to deadlocking

• Contention

• Slowest solution

Implementation #1

• Less deadlocks

• Easy to diagnose

• Removed Contention

• Big speed boost

• Still deadlocks (rare)

• Yet to be proven in

production

Implementation #2

+

24 | © 2013 Velti @ GOTO Zurich

Summarize Results

• Fastest

• No Contention

• Predictable

• Tried and tested

• Dynamic queues

• Most complicated

• Recovery scripts

• Multiple moving parts

Implementation #3

• Currently limited by speed of Mysql

• Try a distributed key-value store
– Recovery?

– Eventual consistency?

Future Considerations

+

+

25 | © 2013 Velti @ GOTO Zurich

Two parts to this story

• Queuing Strategies

• Optimizing hardware

26 | © 2013 Velti @ GOTO Zurich

Hardware optimisation

Photograph and Logo © 2010 Time Out Group Ltd.

• Observed ‘time outs’

 App  RIAK DB

• Developed sophisticated

balancing mechanisms to

code around them, but they

still occurred

• Especially under load

27 | © 2013 Velti @ GOTO Zurich

Nature of the problem

• Delayed responses of up to 60 seconds!

• Our live environment contains:

– 2 x 9 App & RIAK Nodes

– HP DL385 G6

– 2 x AMD Opteron 2431 (6 cores)

• We built a dedicated test environment to

get to the bottom of this:

– 3 x App & RIAK Nodes

– 2 x Intel Xeon (8 cores)

Looking for contention…

28 | © 2013 Velti @ GOTO Zurich

Contention options

• CPU

• Disk IO

• Network IO

Less than

60%

utilisation

?

?

• Got SSD (10x), Independent OEM

• RIAK (SSD) / Logs/OS (HDD)

• RIAK I/O hungry

• Use second NICs/RIAK VLAN

29 | © 2013 Velti @ GOTO Zurich

Memory contention / NUMA
• Looking at the 60% again

– Non-Uniform Memory Access (NUMA) is a computer memory design

used in Multiprocessing, where the memory access time depends on the

memory location relative to a processor. - Wikipedia

• In the 1960s CPUs became faster then memory

• Race for larger cache memory & Cache algorithms

• Multi processors accessing the same memory leads to

contention and significant performance impact

• Dedicate memory to processors/cores/threads

• BUT, - most memory data is required by more then one

process. => cache coherent access (ccNUMA)

• Linux threading allocation is challenged

• Cache-coherence attracts significant overheads, especially

for processes in quick succession!

30 | © 2013 Velti @ GOTO Zurich

Gain control! - NUMACTL

• Processor affinity – Bind a particular process type to a specific processor

• Instruct memory usage to use different memory banks

• For example: numactl --cpunodebind 1 –interleave all erl

• Get it here: apt-get install numactl

• => No timeouts

• => 20%+ speed increase when running App & RIAK

• => Full use of existing hardware

31 | © 2013 Velti @ GOTO Zurich

How about load testing ?

• Our interactive voting platform required load testing

• Requiring 10,000’s connections / second

• Mixture of Http / Https

• Session based requests
– Login a user

– Get a list of candidates

– Get the balance

– Vote for a candidate if credit available

32 | © 2013 Velti @ GOTO Zurich

Load testing - lessons learned

WAN

FW

LAN

LB

Servs

ASA5520 limited at 3-4k new

connections per second

Replaced with ASA5585

(Spec 50k/s, Tested 20k/s)

HAProxy on 2xDL120

# of Linux procs 1 -> 4

Added conn. Throttle

4k/server

6 x DL360 G6

Apache Cipher reduction

K/A consumed all threads

 -> reduced & disabled

Ulimit per proc 1k -> 65k

nn x AWS

Tsung SSL

SessionID bug

33 | © 2013 Velti @ GOTO Zurich

Load testing Tools

• ab (apache bench)
– Easy to use

– Lots of documentation

– Hard to distribute (although we did find “bees with machine guns”)
• https://github.com/newsapps/beeswithmachineguns)

– We experienced Inconsistent results with our setup

– Struggled to create the complex sessions we required

• httperf
– Easy to use

– Lots of documentation

– Hard to distribute (no master / slave setup)

https://github.com/newsapps/beeswithmachineguns
https://github.com/newsapps/beeswithmachineguns
https://github.com/newsapps/beeswithmachineguns

34 | © 2013 Velti @ GOTO Zurich

Load testing Tools

• Write our own
– Will do exactly what we want

– Time

• Tsung
– Very configurable

– Scalable

– Easier to distribute

– Already used in the department

– Steep learning curve

– Setting up a large cluster requires effort

35 | © 2013 Velti @ GOTO Zurich

Tsung
• What is Tsung?

– Open-source multi-protocol distributed load testing tool

– Written in erlang

– Can support multiple protocols: HTTP / SOAP / XMPP / etc.

– Support for sessions

– Master slave setup for distributed load testing

– Very configurable

– Scalable

– Easier to distribute

– Already used in the department

– Steep learning curve

– Setting up a large cluster requires effort

36 | © 2013 Velti @ GOTO Zurich

Distributed Tsung

• Although Tsung provided us almost everything we needed

• We still had to setup lots of instances manually

• This was time consuming / error prone

• We needed a tool to alleviate and automate this

• So we built……

37 | © 2013 Velti @ GOTO Zurich

Ion Storm

• Tool to setup a Tsung cluster on multiple EC2 instances

• With co-ordinated start stop functionality

• Written in ruby, using the rightscale gem:

 rightaws.rubyforge.org

• Which uploads the results to S3 after each run

38 | © 2013 Velti @ GOTO Zurich

Performance

• From a cluster of 20 machines we achieved
– 20K HTTPS / Sec

– 50K HTTP / Sec

– 12K Session based request (mixture of api calls) / Sec

• Be warned though
– Can be expensive to run through EC2

– Limited to 20 EC2 instances unless you speak to Amazon nicely

– Have a look at spot instances

39 | © 2013 Velti @ GOTO Zurich

Open Sourced!

• Designed and built by two Velti engineers

– Ben Murphy

– David Townsend

• Try it out:

git@github.com:mitadmin/ionstorm.git

40 | © 2013 Velti @ GOTO Zurich

Two parts to this story

• Queuing Strategies

• Optimizing hardware

41 | © 2013 Velti @ GOTO Zurich

David Dawson
+44 7900 005 759

ddawson@velti.com

Marcus Kern
+44 7932 661 527

mkern@velti.com

If you’d like to work with or for Velti please contact the Velti Team:

Questions?

Thank You

