
Thinking Parallel:
Generating Parallel Erlang
Programs from High-Level Patterns

Kevin Hammond

University of St Andrews, Scotland

Invited Talk at goto; Conference, Zurich, April 2013

W: http://www.paraphrase-ict.eu

T: @paraphrase_fp7
E: kh@cs.st-andrews.ac.uk

The Present

2

Pound versus Dollar

Evolution of the Microprocessor

3

2000 1985 2012 2006

1.3-3.6GHz 1.8-3.33GHz 2.5-3.5GHz 12-40MHz

1993

60-300MHz

2013: a ManyCore Odyssey

The Future: “megacore” computers?

 Hundreds of thousands, or millions, of (small) cores

4

Core Core Core Core
Core Core Core Core Core Core Core Core

Core Core Core Core Core Core Core Core

Core Core Core Core
Core Core Core Core Core Core Core Core

Core Core Core Core Core Core Core Core

Core Core Core Core Core Core
Core Core Core Core Core Core Core Core

Core Core Core Core Core
Core

Core
Core Core Core Core Core Core Core Core

Core Core Core Core Core Core Core Core Core
Core Core

5

The Manycore Challenge

“Ultimately, developers should start thinking about tens, hundreds, and
thousands of cores now in their algorithmic development and deployment
pipeline.”

Anwar Ghuloum, Principal Engineer, Intel Microprocessor Technology Lab

“The dilemma is that a large percentage of mission-critical enterprise applications
will not ``automagically'' run faster on multi-core servers. In fact, many will
actually run slower. We must make it as easy as possible for applications
programmers to exploit the latest developments in multi-core/many-core
architectures, while still making it easy to target future (and perhaps
unanticipated) hardware developments.”

Patrick Leonard, Vice President for Product Development
Rogue Wave Software

The ONLY important challenge in Computer Science
Intel

Also recognised as thematic priorities by EU and
national bodies

Doesn’t that mean millions of threads
on a megacore machine??

9

All future programming will be parallel

 No future system will be single-core
 parallel programming will be essential

 It’s not just about performance
 it’s also about energy usage

 If we don’t solve the multicore challenge, then all other CS
advances won’t matter!
 user interfaces

 cyber-physical systems

 robotics

 games

 ...

10

How to build a wall

(with apologies to Ian Watson, Univ. Manchester)

How to build a wall faster

How NOT to build a wall

Task identification is not the only problem…
Must also consider Coordination, communication, placement,
scheduling, …

Typical CONCURRENCY
Approaches require the
Programmer to solve these

We need structure
We need abstraction

We don’t need another brick in the wall

14

Thinking Parallel

 Fundamentally, programmers must learn to “think parallel”

 this requires new high-level programming constructs

 perhaps dealing with hundreds of millions of threads

 You cannot program effectively while worrying about deadlocks etc.

 they must be eliminated from the design!

 You cannot program effectively while fiddling with communication etc.

 this needs to be packaged/abstracted!

 You cannot program effectively without performance information

 this needs to be included as part of the design!

15

A Solution?

“The only thing that works for
parallelism is functional
programming”

Bob Harper, Carnegie Mellon University

Parallel Functional Programming

 No explicit ordering of expressions

 Purity means no side-effects
 Impossible for parallel processes to interfere with each other

 Can debug sequentially but run in parallel

 Enormous saving in effort

 Programmer concentrate on solving the problem
 Not porting a sequential algorithm into a (ill-defined) parallel domain

 No locks, deadlocks or race conditions!!

 Huge productivity gains!

 Much shorter code

The ParaPhrase Approach

 Start bottom-up
 identify (strongly hygienic) COMPONENTS

 using semi-automated refactoring

 Think about the PATTERN of parallelism
 e.g. map(reduce), task farm, parallel search, parallel completion, ...

 STRUCTURE the components into a parallel program
 turn the patterns into concrete (skeleton) code

 Take performance, energy etc. into account (multi-objective optimisation)

 also using refactoring

 RESTRUCTURE if necessary! (also using refactoring)

 21

both legacy and
new programs

The ParaPhrase Approach

Refactorer

Erlang C/C++

Costing/Pr
ofiling

Erlang C/C++

Pattern
Library

AMD
Opteron

AMD
Opteron

Intel
Core

Intel
Core

Nvidia
GPU

Nvidia
GPU

Intel
GPU

Intel
GPU

Nvidia
Tesla

Intel
Xeon Phi

Mellanox Infiniband

... Haskell

... Haskell

Example: Simple matrix multiplication

 Given two NxN matrices, A and B

23

 Their product is

where

Example: Simple matrix multiplication

 The sequential Erlang algorithm iterates over the rows
 mult (A, B) multiplies the rows of A with the columns of B

 [mult1Row(R,Cols) || R <- Rows] does mult1Row(R,Cols) with R
set to each row in turn

 26

mult (Rows, Cols) -> [mult1row(R,Cols) || R <- Rows].

...

Example: Simple matrix multiplication

 The sequential Erlang algorithm iterates over the rows
 mult (A, B) multiplies the rows of A with the columns of B

 mult1row (R, B) multiplies one row of A with all the columns of B

 lists:map maps an in-place function over all the columns

 27

mult (Rows, Cols) -> [mult1row(R,Cols) || R <- Rows].

mult1row (R, Cols) ->
 lists:map(fun(C) -> ... end, Cols).

...

Example: Simple matrix multiplication

 The sequential Erlang algorithm iterates over the rows
 mult (A, B) multiplies the rows of A with the columns of B

 mult1row (R, B) multiplies one row of A with all the columns of B

 mult1row1col (R, C) multiplies one row of A with one column of B

 lists:map maps an in-place function over all the columns

28

mult (Rows, Cols) -> [mult1row(R,Cols) || R <- Rows].

mult1row (R, Cols) ->
 lists:map(fun(C) -> mult1row1col(R,C) end, Cols).

...

Example: Simple matrix multiplication

 The sequential Erlang algorithm iterates over the rows
 mult (A, B) multiplies the rows of A with the columns of B

 mult1row (R, B) multiplies one row of A with all the columns of B

 mult1row1col (R, C) multiplies one row of A with one column of B

29

mult (Rows, Cols) -> [mult1row(R,Cols) || R <- Rows].

mult1row (R, Cols) ->
 lists:map(fun(C) -> mult1row1col(R,C) end, Cols).

multi1row1col(R,C) -> ... multiply one row by one column ...

Example: Simple matrix multiplication

 To parallelise it, we can spawn a process to multiply each row.

 30

mult (Rows, Cols) ->
 ...
 join(
 [spawn(fun() -> ... mult1row(R,Cols) end) || R <- Rows]
).

...

Speedup Results

32

 24 core machine at Uni. Pisa

 AMD Opteron 6176. 800 Mhz

 32GB RAM

Yikes - SNAFU!!

What’s going on?

 We have too many small processes
 1,000,000 for our 1000x1000 matrix

 each process carries setup and scheduling overhead

 Erlang does not automatically merge processes!

33

And how can we solve this?

34

Introduce a
Task Farm

 A high-level pattern of parallelism

 A farmer hands out tasks to a fixed number of worker processes
 This increases granularity and reduces process creation costs

Some Common Patterns

 High-level abstract patterns of common parallel algorithms

35

Refactoring

 Refactoring changes the
structure of the source code
 using well-defined rules

 semi-automatically under
programmer guidance

Review

Refactoring: Farm Introduction

38

Farm

Demo: Adding a Farm

40

This uses the new Erlang ‘skel’ Library

 Available from
https://github.com/ParaPhrase/skel

41

mult([],_) -> [];
mult(Rows,Cols) ->
 skel:run(
 [{farm, ...
 fun(R) -> lists:map(
 fun(C) -> mult_prime(R, C) end,
 Cols),
 ...}],
 Rows).

Speedup Results

43

 24 core machine at Uni. Pisa

 AMD Opteron 6176. 800 Mhz

 32GB RAM

This is much better!

But I don’t want to give you that...

 I want to give you more...

 There are ways to improve task size further
 e.g. “chunking” – combine adjacent data items to increase granularity

 a poor man’s mapReduce

 Just change the pattern slightly!

44

Adding Chunking

45

Speedup Results

46

 24 core machine at Uni. Pisa

 AMD Opteron 6176. 800 Mhz

 32GB RAM

Chunking gives
more

improvements!

Conclusions

 Functional programming makes it easy to introduce parallelism

 No side effects means any computation could be parallel

 millions of ultra-lightweight threads (sub micro-second)

 Matches pattern-based parallelism

 Much detail can be abstracted

 automatic mechanisms for granularity control, synchronisation etc

 Lots of problems can be avoided

 e.g. Freedom from Deadlock

 Parallel programs give the same results as sequential ones!

 But still not completely trivial!!

 Need to choose granularity carefully!

 e.g. thresholding

 May need to understand the execution model

 e.g. pseq

Isn’t this all just wishful thinking?

48

Rampant-Lambda-Men in St Andrews

NO!

 C++11 has lambda functions

 Java 8 will have lambda (closures)

 Apple uses closures in Grand Central Dispatch

49

ParaPhrase Parallel C++ Refactoring

 Integrated into Eclipse

 Supports full C++(11) standard

 Uses strongly hygienic components
 functional encapsulation (closures)

50

Performance of FastFlow C++ Library

 5.5 speedup on 12 cores

51

Compared with 5.1
speedup from a
hand-optimised
version

Further Reading

Chris Brown. Hans-Wolfgang Loidl and Kevin Hammond
“ParaForming Forming Parallel Haskell Programs using Novel Refactoring Techniques”
Proc. 2011 Trends in Functional Programming (TFP), Madrid, Spain, May 2011

Henrique Ferreiro, David Castro, Vladimir Janjic and Kevin Hammond
“Repeating History: Execution Replay for Parallel Haskell Programs”
Proc. 2012 Trends in Functional Programming (TFP), St Andrews, UK, June 2012

Chris Brown. Marco Danelutto, Kevin Hammond, Peter Kilpatrick and Sam Elliot
“Cost-Directed Refactoring for Parallel Erlang Programs”
Proc. 2013 International Symposium on High-level Parallel Programming and
Applications (HLPP), Paris, France, June 2013

Funded by

• ParaPhrase (EU FP7), Patterns for heterogeneous multicore,

€2.6M, 2011-2014

• SCIEnce (EU FP6), Grid/Cloud/Multicore coordination

• €3.2M, 2005-2012

• Advance (EU FP7), Multicore streaming

• €2.7M, 2010-2013

• HPC-GAP (EPSRC), Legacy system on thousands of cores

• £1.6M, 2010-2014

• Islay (EPSRC), Real-time FPGA streaming implementation

• £1.4M, 2008-2011

• TACLE: European Cost Action on Timing Analysis

• €300K, 2012-2015

56

Industrial Connections

Mellanox Inc.

Erlang Solutions Ltd

SAP GmbH, Karlsrühe

BAe Systems

Selex Galileo

BioId GmbH, Stuttgart

Philips Healthcare

Software Competence Centre, Hagenberg

Microsoft Research

Well-Typed LLC

57

THANK YOU!

http://www.paraphrase-ict.eu

 @paraphrase_fp7

http://www.project-advance.eu

58

