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The Present 
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Pound versus Dollar 



Evolution of the Microprocessor 
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2000 1985 2012 2006 

1.3-3.6GHz 1.8-3.33GHz 2.5-3.5GHz 12-40MHz 

1993 

60-300MHz 

2013: a ManyCore Odyssey 



The Future: “megacore” computers? 

 Hundreds of thousands, or millions, of (small) cores 

4 

Core Core Core Core 
Core Core Core Core Core Core Core Core 

Core Core Core Core Core Core Core Core 

Core Core Core Core 
Core Core Core Core Core Core Core Core 

Core Core Core Core Core Core Core Core 

Core Core Core Core Core Core 
Core Core Core Core Core Core Core Core 

Core Core Core Core Core 
Core 

Core 
Core Core Core Core Core Core Core Core 

Core Core Core Core Core Core Core Core Core 
Core Core 



5 



The Manycore Challenge 

“Ultimately, developers should start thinking about tens, hundreds, and 
thousands of cores now in their algorithmic development and deployment 
pipeline.”  
 
Anwar Ghuloum, Principal Engineer, Intel Microprocessor Technology Lab 

“The dilemma is that a large percentage of mission-critical enterprise applications 
will not ``automagically'' run faster on multi-core servers. In fact, many will 
actually run slower. We must make it as easy as possible for applications 
programmers to exploit the latest developments in multi-core/many-core 
architectures, while still making it easy to target future (and perhaps 
unanticipated) hardware developments.” 
 
Patrick Leonard, Vice President for Product Development 
Rogue Wave Software 

 
The ONLY important challenge in Computer Science 
Intel 

 
Also recognised as thematic priorities by EU and 
national bodies 



Doesn’t that mean millions of threads 
on a megacore machine?? 
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All future programming will be parallel 

 No future system will be single-core 
 parallel programming will be essential 

 

 It’s not just about performance 
 it’s also about energy usage 

 

 If we don’t solve the multicore challenge, then all other CS 
advances won’t matter! 
 user interfaces 

 cyber-physical systems 

 robotics 

 games 

 ... 
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How to build a wall 

(with apologies to Ian Watson, Univ. Manchester) 



How to build a wall faster 



How NOT to build a wall 

Task identification is not the only problem… 
Must also consider Coordination, communication, placement, 
scheduling, … 

Typical CONCURRENCY 
Approaches require the 
Programmer to solve these 



We need structure 
We need abstraction 
 
We don’t need another brick in the wall 
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Thinking Parallel 

 Fundamentally, programmers must learn to “think parallel” 

 this requires new high-level programming constructs 

 perhaps dealing with hundreds of millions of threads 

 

 You cannot program effectively while worrying about deadlocks etc. 

 they must be eliminated from the design! 

 

 You cannot program effectively while fiddling with communication etc. 

 this needs to be packaged/abstracted! 

 

 You cannot program effectively without performance information 

 this needs to be included as part of the design! 
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A Solution? 

“The only thing that works for 
parallelism is functional 
programming” 

 

Bob Harper, Carnegie Mellon University 



Parallel Functional Programming 

 No explicit ordering of expressions 

 Purity means no side-effects 
 Impossible for parallel processes to interfere with each other 

 Can debug sequentially but run in parallel 

 Enormous saving in effort 

 Programmer concentrate on solving the problem 
 Not porting a sequential algorithm into a (ill-defined) parallel domain 

 No locks, deadlocks or race conditions!! 

 Huge productivity gains! 

 Much shorter code 



The ParaPhrase Approach 

 Start bottom-up 
 identify  (strongly hygienic) COMPONENTS 

 using semi-automated refactoring 

 

 Think about the PATTERN of parallelism 
 e.g. map(reduce), task farm, parallel search, parallel completion, ... 

 

 STRUCTURE the components into a parallel program 
 turn the patterns into concrete (skeleton) code 

 Take performance, energy etc. into account (multi-objective optimisation) 

 also using refactoring 

 

 RESTRUCTURE if necessary! (also using refactoring) 
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both legacy and 
new programs 



The ParaPhrase Approach 
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Example: Simple matrix multiplication 

 Given two NxN matrices, A and B 
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 Their product is 

where 



Example: Simple matrix multiplication 

 The sequential Erlang algorithm iterates over the rows 
 mult (A, B) multiplies the rows of A with the columns of B 

 

 

 

 

 

 

 

 [ mult1Row(R,Cols) || R <- Rows ] does mult1Row(R,Cols) with R 
set to each row in turn 
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mult (Rows, Cols) -> [ mult1row(R,Cols) || R <- Rows  ].    
 
... 



Example: Simple matrix multiplication 

 The sequential Erlang algorithm iterates over the rows 
 mult (A, B) multiplies the rows of A with the columns of B 

 mult1row (R, B) multiplies one row of A with all the columns of B 

 

 

 

 

 

 

 

 lists:map maps an in-place function over all the columns 
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mult (Rows, Cols) -> [ mult1row(R,Cols) || R <- Rows  ].    
 
mult1row (R, Cols) -> 
 lists:map(fun(C) -> ... end, Cols). 
 
... 



Example: Simple matrix multiplication 

 The sequential Erlang algorithm iterates over the rows 
 mult (A, B) multiplies the rows of A with the columns of B 

 mult1row (R, B) multiplies one row of A with all the columns of B 

 mult1row1col (R, C) multiplies one row of A with one column of B 

 

 

 

 

 

 

 

 

 lists:map maps an in-place function over all the columns 
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mult (Rows, Cols) -> [ mult1row(R,Cols) || R <- Rows  ]. 
 
mult1row (R, Cols) -> 
 lists:map(fun(C) -> mult1row1col(R,C) end, Cols). 
 
... 



Example: Simple matrix multiplication 

 The sequential Erlang algorithm iterates over the rows 
 mult (A, B) multiplies the rows of A with the columns of B 

 mult1row (R, B) multiplies one row of A with all the columns of B 

 mult1row1col (R, C) multiplies one row of A with one column of B 
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mult (Rows, Cols) -> [ mult1row(R,Cols) || R <- Rows  ].    
 
mult1row (R, Cols) -> 
 lists:map(fun(C) -> mult1row1col(R,C) end, Cols). 
 
multi1row1col(R,C) -> ... multiply one row by one column ... 



Example: Simple matrix multiplication 

 To parallelise it, we can spawn a process to multiply each row. 
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mult (Rows, Cols) -> 
 ... 
 join( 
         [ spawn( fun() -> ... mult1row(R,Cols) end ) || R <- Rows ] 
 ). 
 
... 



Speedup Results 
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 24 core machine at Uni. Pisa 

 AMD Opteron 6176. 800 Mhz 

 32GB RAM 

Yikes - SNAFU!! 



What’s going on? 

 We have too many small processes 
 1,000,000 for our 1000x1000 matrix 

 each process carries setup and scheduling overhead 

 Erlang does not automatically merge processes! 

33 



And how can we solve this? 
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Introduce a  
Task Farm 

 A high-level pattern of parallelism 

 A farmer hands out tasks to a fixed number of worker processes 
 This increases granularity and reduces process creation costs 



Some Common Patterns 

 High-level abstract patterns of common parallel algorithms 
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Refactoring 

 Refactoring changes the 
structure of the source code 
 using well-defined rules 

 semi-automatically under 
programmer guidance 

 

 

 

 

 

 

 

 

 

Review 



Refactoring: Farm Introduction 
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Farm 



Demo: Adding a Farm 
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This uses the new Erlang ‘skel’ Library 

 Available from 
https://github.com/ParaPhrase/skel 
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mult([],_) -> []; 
mult(Rows,Cols) -> 
        skel:run( 
     [{farm, ...  
         fun(R) -> lists:map( 
           fun(C) -> mult_prime(R, C) end, 
           Cols),  
           ...}],  
        Rows).  



Speedup Results 
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 24 core machine at Uni. Pisa 

 AMD Opteron 6176. 800 Mhz 

 32GB RAM 

This is much better! 



But I don’t want to give you that... 

 I want to give you more... 

 

 There are ways to improve task size further 
 e.g. “chunking” – combine adjacent data items to increase granularity 

 a poor man’s mapReduce 

 

 Just change the pattern slightly! 
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Adding Chunking 
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Speedup Results 
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 24 core machine at Uni. Pisa 

 AMD Opteron 6176. 800 Mhz 

 32GB RAM 

Chunking gives 
more 

improvements! 



Conclusions 

 Functional programming makes it easy to introduce parallelism 

 No side effects means any computation could be parallel 

 millions of ultra-lightweight threads (sub micro-second) 

 Matches pattern-based parallelism 

 Much detail can be abstracted 

 automatic mechanisms for granularity control, synchronisation etc 

 

 Lots of problems can be avoided 

 e.g. Freedom from Deadlock 

 Parallel programs give the same results as sequential ones! 
 

 But still not completely trivial!! 

 Need to choose granularity carefully! 

 e.g. thresholding 

 May need to understand the execution model 

 e.g. pseq 

 



Isn’t this all just wishful thinking? 
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Rampant-Lambda-Men in St Andrews 



NO! 

 C++11 has lambda functions 

 Java 8 will have lambda (closures) 

 Apple uses closures in Grand Central Dispatch 
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ParaPhrase Parallel C++ Refactoring 

 Integrated into Eclipse 

 Supports full C++(11) standard 

 Uses strongly hygienic components 
 functional encapsulation (closures) 
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Performance of FastFlow C++ Library 

 5.5 speedup on 12 cores 
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Compared with 5.1 
speedup from a 
hand-optimised 
version 
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Industrial Connections 

Mellanox Inc. 

Erlang Solutions Ltd 

SAP GmbH, Karlsrühe 

BAe Systems 

Selex Galileo 

BioId GmbH, Stuttgart 

Philips Healthcare 

Software Competence Centre, Hagenberg 

Microsoft Research 

Well-Typed LLC 
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http://www.paraphrase-ict.eu 

 @paraphrase_fp7 

http://www.project-advance.eu 
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