
ERLANG/OTP
presents

TORBEN HOFFMANN

Torben Hoffmann
Erlang Solutions

@LeHoff
torben@erlang-solutions.com
www.erlang-solutions.com

WHAT IS SCALABILITY?

handle traffic spike
Behave predictably under extended heavy load
Carry the traffic it was designed to handle

handle traffic spike
Behave predictably under extended heavy load
Carry the traffic it was designed to handle

WHAT IS (MASSIVE)

millions of simultaneous requests being handled
Requests running independently of each other
SMS TV voting spile

millions of simultaneous requests being handled
Requests running independently of each other
SMS TV voting spile

WHAT IS HIGH

No single point of failure.
Two Computers (Joe Armstrong) Three if you ask Leslie Lamport
Redundant network - Sys admin tripping on a network cable not an
excuse
Battery backup / generators. Hardware failure
Distribute your software and data. Software is important, but it is not
only about Software.

WHAT IS FAULT

Even if things go wrong continue working and not affect other things in
the system.
Ability to isolate the error. Regain control.

WHAT IS DISTRIBUTION

Simplicity in designing your system. Scalability and fault tolerance.
Language with built in distribution.

Source: http://www.tuvie.com

With Erlang you can hide how the distribution over machines is taking
place or you can decide to peek inside if you want to know more.
Flexibility

Simplicity in designing your system. Scalability and fault tolerance.
Language with built in distribution.

YES,
PLEASE!!
!

Do you need a distributed system? Do you need
a scalable system? Do you need a reliable
system? Do you need a fault-tolerant system?
Do you need a massively concurrent system? Do
you need a distributed system? Do you need a
scalable

system? Do you need a reliable system? Do you
need a fault-tolerant system? Do
distributed system? Do you need a scalable
system? Do you need a reliable system? Do you
need a fault-tolerant system? Do you need a
massively

So, you have all these requirements. What is it you actually need?

TO THE
RESCUE

• OPEN SOURCE
• CONCURRENCY-ORIENTED
• LIGHTWEIGHT PROCESSES
• ASYNCHRONOUS MESSAGE PASSING
• SHARE-NOTHING MODEL
• PROCESS LINKING / MONITORING
• SUPERVISION TREES AND RECOVERY
STRATEGIES
• TRANSPARENT DISTRIBUTION MODEL
• SOFT-REAL TIME
• LET-IT-FAIL PHILOSOPHY
• HOT-CODE UPGRADES

W
H

AT IS ERLAN
G

WELL, IN FACT YOU
NEED MORE.

ERLANG IS JUST
A PROGRAMMING
LANGUAGE.

If you need to develop a highly complex system which never goes
down, has built in fault tolerance, distribution mechanisms and
manages millions of simultaneous transactions, you need more than
just a programming language.

YOU NEED
ARCHITECTURE
PATTERNS.
YOU NEED
MIDDLEWARE.
YOU NEED LIBRARIES.
YOU NEED TOOLS.

Erlang solves many software related problems.
It is still just a programming language
Lots of problems you solve are the same.
Don’t want to reinvent the wheel.
Development, deployment and monitoring tools.

YOU NEED OTP.

BOS - 1993, merged with Erlang in 1995.
Erlang is only 33% of your strength. VM, OTP
What does OTP Stand for? Rather not tell you.
On The Phone, One True Pair, Oh, This is Perfect

SOME TEXT

Ministry of Propaganda at Ericsson
Openness - JSON, XML, ASN.1, SNMP, Java, C, Ports.
Telecom - Distributed, Massively concurrent soft realtime systems with
requirements
 on scalability
Platform -

WHAT IS MIDDLEWARE?

A set of abstract principles and design rules
They describe the software architecture of an Erlang System
Needed so existing tools will be compatible with them
Facilitate the understanding of the system among teams

Leave Architectural Patterns to Last

M
ID

D
LEW

A
RE

DESIGN
PATTERNS

FAULT
TOLERANCE

DISTRIBUTION
UPGRADES

Systems will do very different things. But the issues are still the same.
Glue to manage your distribution and communication layers. Your fault
tolerance layers. Deploy and upgrade your systems.

WHAT ARE LIBRARIES?

Basic Applications Erlang Runtime System, Kernel, Compiler, Standard Lib,
System Architecture Support Library (SASL)

Database Applications
Mnesia (Distributed relational database) ODBC (Interface for accessing
SQL databases)

LIBRA
RIES

STORAGE
O&M

INTERFACES
COMMUNICATIO

N

Operations and Maintenance Applications
Operating System Monitor, SNMP, OTP MIBs

Interface and communication Applications

- Corba ORB, ASN1 Compiler, Crypto, (Wx widgets), Inets (TCP, UDP,
HTTP, FTP),
Java Interface & Erlang to C Interface, SSH/SSL, XML Parsing

WHAT TOOLS?

O
TP TO

O
LS

DEVELOPMENT
TEST

FRAMEWORKS
RELEASE &

DEPLOYMENT
DEBUGGING &

Eunit, Common test. No mocking frameworks, several OS.
Release and upgrade tools. Worth the hassle?
Low level debugging tools. dbg, trace local & global calls
Percept - Concurrency bottlenecks/profiling
Observer - web front end to other tools, e.g. crash dump viewer.
etop, crash dump viewer

PART OF THE ERLANG
DISTRIBUTION

OPEN SOURCE

OTP IS

O
TPServers

Finite State
Machines
Event
Handlers
Supervisors
Applications

Less Code
Less Bugs

More Solid
Code
More

Tested
Code More
Free Time

Cons: Steeper learning curve, affects performance

Your
H

eading
Fail Safe, Fail Early
* Hide tricky parts of Concurrency. Mutexes, deadlocks, race conditions
* Stress 9-5 programmers

Let It Fail

convert(Day) ->
 case Day of
 monday -> 1;
 tuesday -> 2;
 wednesday -> 3;
 thursday -> 4;
 friday -> 5;
 saturday -> 6;
 sunday -> 7;
 Other ->
 {error, unknown_day}
 end.

BAN
G FO

R TH
E

BUCK
Source: http://www.slideshare.net/
JanHenryNystrom/productivity-
gains-in-erlang

You spend 3x the time on solving the actual problem (App) and
much less on all sorts of other things.

ISOLATE THE ERROR!

Runtime Error
Do not use the word crash.
No shared memory -> Restart the process. Recreate the State.

PROPAGATING EXIT SIGNALS

Exit Signals

PidA PidB

{'EXIT', PidA, Reason}

PidC

{'EXIT', PidB, Reason}

Explain

Links, Exit Signals and trapping exits

Trap Exit

TRAPPING AN EXIT SIGNAL

PidA

{'EXIT', PidA, Reason}

PidC

PidB

Supervisors

PidA

PidC

PidBSupervisor

Workers

Application

Handle dependencies.
• An application is a logical unit of processes and modules grouped together

to perform a given task

• Application = Collection of resources loaded, started and stopped as one

• Contains supervision tree. Workers can be implemented using generic
behaviours

Releases

Release

Mongoose

IM folsom lager

snmp mnesia stdlib

SASL kernel ERTS

• Complete Erlang systems are built as releases

• A release is: a version of the Erlang Run Time System (ERTS). A set of OTP applications that
work together

• Releases allow to start, stop, and manage applications in a standard manner

• Releases can be upgraded or downgraded as a unit

• Applications which come as part of OTP

• Applications the programmer writes

BEHAVIOURS

OTP Behaviours are a formalisation of design patterns
Processes share similar structures and life cycles , started, receive messages & send replies, terminate
Even if they perform different tasks, they will perform them following a set of patterns
Each design pattern solves a specific problem

SPECIFIC
CALLBACK
MODULE

GENERIC
BEHAVIOUR

MODULE

Server

process

The idea is to split the code in two parts
The generic part is called the generic behaviour,provided as
library modules
The specific part is called the callback module, implemented by
programmer

O
TPServers

Finite State
Machines
Event
Handlers
Supervisors
Applications

Less Code
Less Bugs

More Solid
Code
More

Tested
Code More
Free Time

Generic: start, stop, receive and send messages.
Specific: Server state, messages, handling requests (+reply)
Specific know nothing about the generic.
generic servers, fsm, event handlers, supervisors, roll out your own

call(Name, Message) ->
 Name ! {request, self(), Message},
 receive
 {reply, Reply} -> Reply
 end.

reply(Pid, Reply) ->
 Pid ! {reply, Reply}.

Client Server

{request, Pid, Message}

{reply, Reply}

call(Name, Message) ->
 Name ! {request, self(), Message},
 receive
 {reply, Reply} -> Reply
 end.

9-5 programmer will not think of all error cases.
Concurrency is tricky. Deadlocks, race conditions, mutexes, critical sections.

Client Server

{request, Pid, Message}

{reply, Reply}

Server
{reply, Reply}

call(Name, Msg) ->
 Ref = make_ref(),
 Name ! {request, {Ref, self()}, Msg},
 receive {reply, Ref, Reply} -> Reply end.

reply({Ref, Pid}, Reply) ->
 Pid ! {reply, Ref, Reply}.

{request, {Ref, self()}, Message}

{reply, Ref, Reply}

{reply, ???, Reply}

TODO Fix Animation

PidA PidB

{request, {Ref, PidA}, Msg}

call(Name, Msg) ->
 Ref = erlang:monitor(process, Name),
 Name ! {request, {Ref, self()}, Msg},
 receive
! {reply, Ref, Reply} ->
! erlang:demonitor(Ref),
! Reply;
! {'DOWN', Ref, process, _Name, _Reason} ->
! {error, no_proc}
 end.

Fix animation

PidA PidB

{request, {Ref, PidA}, Msg}

call(Name, Msg) ->
 Ref = erlang:monitor(process, Name),
 Name ! {request, {Ref, self()}, Msg},
 receive
! {reply, Ref, Reply} ->
! erlang:demonitor(Ref, [flush]),
! Reply;
! {'DOWN', Ref, process, _Name, _Reason} ->
! {error, no_proc}
 end.

{reply, Ref, Reply}

{'DOWN', Ref, process, PidB, Reason}

BEH
A

VIO
U

RS

TIMEOUTS
DEADLOCKS

TRACING
MONITORING
DISTRIBUTION

AUTOMATIC TAKEOVER

N1

{myApp, 2000, {n1@host, {n2@host, n3@host}]}

N2 N3

Applicatio
n
Master

Applicatio
n

n1@host
dies

Application Masters on
failover nodes

N2 N3

n2@host
diesApplication is

restarted on n2@host

{myApp, 2000, {n1@host, {n2@host, n3@host}]}

N1 N3

n1@host comes
back up

Application is restarted on
n3@host

{myApp, 2000, {n1@host, {n2@host, n3@host}]}

N1 N3

N1 takes over N3

{myApp, 2000, {n1@host, {n2@host, n3@host}]}

RELEASE STATEMENT
OF AIMS

“To scale the radical concurrency-oriented
programming paradigm to build reliable
general-purpose software, such as server-
based systems, on massively parallel machines
(10^5 cores).”

Until recently, every 18 months, computing power doubled. Moore’s law came
about.
Million cores within our lifetime, 100,000s will become common place.
Consortium of companies and universities.
Bring OTP to the next level
European Union Seventh Framework Programme (FP7/2007-2013) , aprox. 3.5 million Euro

The Runtim
e

Q
ueues

Erlang VM

Scheduler #1

Scheduler #2

run queue

Scheduler #2

Scheduler #N

run queue

run queue

migration
logic

migration
logic

1 scheduler per core
Effort in migration logic among the cores.

Heriot-Watt, University of Kent, Uppsala University,
Institute of Communications & Computer Systems (Athens)
Electricite de France, Erlang Solutions (Case Studies), Ericsson

WP4 Scalable Infrastructure

WP3 SD Erlang Language

WP2 Virtual Machine

W
P5 Tools

W
P6 Case Studies

LIMITATIONS ARE PRESENT AT
THREE LEVELS

Erlang is too much small cluster focused.

* Cover / Stratch across
* There might be some overlap between layers

• PUSH THE RESPONSIBILITY FOR SCALABILITY FROM THE
PROGRAMMER TO THE VM
• ANALYZE PERFORMANCE AND SCALABILITY
• IDENTIFY BOTTLENECKS AND PRIORITIZE CHANGES AND
EXTENSIONS
• TACKLE WELL-KNOWN SCALABILITY ISSUES

• ETS TABLES (SHARED GLOBAL DATA STRUCTURE)
• MESSAGE PASSING, COPYING AND FREQUENTLY COMMUNICATING
PROCESSES

VM LANGUAGE INFRASTRUCT
URE

Evolve the Erlang virtual machine – which implements Erlang on each
core – so that it can work effectively in large-scale multicore systems.

Percept2 - visualisation

VM LANGUAGE INFRASTRUCT
URE

• TWO MAJOR ISSUES
• FULLY CONNECTED CLUSTERS
• EXPLICIT PROCESS PLACEMENT

• SCALABLE DISTRIBUTED (SD) ERLANG
• NODES GROUPING
• NON-TRANSITIVE CONNECTIONS
• IMPLICIT PROCESS PLACEMENT
• PART OF THE STANDARD ERLANG/OTP PACKAGE

• NEW CONCEPTS INTRODUCED
• LOCALITY, AFFINITY AND DISTANCE

Scalable Distributed (SD) Erlang, provides constructs to control how computations are spread
across multicore platforms, and coordination patterns to allow SD Erlang to effectively describe
computations on large platforms, while preserving performance portability.

Tools - Scheduler, visualising process migration.

• MIDDLEWARE LAYER
• SET OF ERLANG APPLICATIONS
• CREATE AND MANAGE CLUSTERS OF
(HETEROGENEOUS) ERLANG NODES
• API TO MONITOR AND CONTROL ERLANG
DISTRIBUTED SYSTEMS
• EXISTING TRACING/LOGGING/DEBUGGING TOOLS
PLUGGABLE
• BROKER LAYER BETWEEN USERS AND CLOUD
PROVIDERS
• AUTO-SCALING

VM LANGUAGE INFRASTRUCT
URE

WombatOA
M

* Basic Erlang has the ability to go in and monitor what is going on in any node you can attach yourself to.
* But no tool exists to manage a big number of nodes in a coherent fashion.
* Cloud Provider. Analyse metrics which are on an OS level. CPU load, memory,
etc
* Scaling should however be based on the application layer
* O&M which monitor. Hidden nodes.
* Nagios & other tools with plugins.

CONCLUSIONS

USE
ERLANG

Do you need a distributed system? Do you need
a scalable system? Do you need a reliable
system? Do you need a fault-tolerant system?
Do you need a massively concurrent system? Do
you need a distributed system? Do you need a
scalable

system? Do you need a reliable system? Do you
need a fault-tolerant system? Do
distributed system? Do you need a scalable
system? Do you need a reliable system? Do you
need a fault-tolerant system? Do you need a
massively

USE
ERLANG/
OTP

Do you need a distributed system? Do you need
a scalable system? Do you need a reliable
system? Do you need a fault-tolerant system?
Do you need a massively concurrent system? Do
you need a distributed system? Do you need a
scalable

system? Do you need a reliable system? Do you
need a fault-tolerant system? Do
distributed system? Do you need a scalable
system? Do you need a reliable system? Do you
need a fault-tolerant system? Do you need a
massively

@LeHoff

EVALUATE NOW!

