Programming the Cloud:
the Internet as Platform

7 48 B

Gregor Hohpe
Software Engineer
www.EnterpriselntegrationPatterns.com

646“8[('3

Who's Gregor?

* Distributed systems, asynchronous messaging,
service-oriented architectures

*MQ, MSMQ, JMS, ESB’s
* Software engineer at Google
* Book: Enterprise Integration Patterns

* Site: www.eaipatterns.com

» Write code every day. Share knowledge through
patterns.

« “Starbucks does not use 2-phase commit” featured in
Joel Spolsky’s Best Software Writing.

Google ¢ ‘d

Internet as a Platform: The Good

Falling cost of Ubiquitous Democratized
storage and broadband tools of
computing connectivity production
power
Q
Google ‘Q)

Internet as a Platform: The Challenges

S~

Architect's Dream {4

*Loosely coupled
* Extensible
 Standards-based
* Fault tolerant

* Unlimited computing
power

» Ubiquitous

Google

Developer’s Nightmare li)

*NO Call Stack
*NO Transactions
*NO Promises
*NO Certainty

*NO Ordering
Constraints

Isn’'t This What Distributed Transactions Are For?

*Require coordinator

*Even 2 Phase Commit has windows of
uncertainty

*Not practical for long running interactions
 Locks not practical / economical
* |solation not possible / practical

» Usually not supported

*Don’t scale
“Life Beyond Distributed Transactions — 'J

an Apostate’s Opinion”

--Pat Helland

Google ‘\52

Still An Issue With HTTP

e Hardware failure
* Network failure
e Time-outs

* Partial response

Total: $219.73

| Buy! E I

Google ‘@)

New Game Rules

ACID (before) ACID (today)

e Atomic » Associative

e Consistent « Commutative

* Isolated » ldempotent

e Durable e Distributed
Predictive Flexible
Accurate Redundant

Google e ‘\72

Starbucks Does not Use 2-Phase Commit Either

* Start making coffee before customer pays
*Reduces latency
*What happens if...

Customer rejects drink Remake drink
Retry

Coffee maker breaks Refund money
Compensation

Customer cannot pay Discard beverage
Write-off

Google ‘@)

Programming the Cloud — The Google Way

* Fault tolerant distributed storage: Google File System
* Distributed shared memory: Bigtable
* New programming abstractions: MapReduce

* Domain Specific Languages: Sawzall

Google.stanford.edu (Circa 1997) Current Rack Design

Google ¢ ‘a

Fault Tolerant Distributed Disk Storage: GFS

* Data replicated 3 times. Upon failure, software re-replicates.
» Master: Manages file metadata. Chunk size 64 MB.

* Optimized for high-bandwidth sequential read / writes

* Clusters > 5 PB of disk GES
Master
ColEd: ¢ Bl o
1 1
Cf: EE - |
(_Zf;u;k-se-rv-er-l- (_Zf;u;k-se-rv-er-Z- E:P:u;k-s;r;e: I:I

http://research.google.com/archive/gfs-sosp2003.pdf

Google @ ‘@

Distributed Shared Memory: Bigtable

 Sparse, distributed, persistent, multidimensional, sorted

* Not a relational database (RDBMS): no schema, no joins,

no foreign key constraints, no multi-row transactions

* Each row can have any number of columns, similar to a

dictionary data structure for each row.

* Basic data types: string, counter, byte array

» Accessed by row key, column name, timestamp

* Data split into tablets for replication

e Largest cells are > 700TB

http://research.google.com/archive/bigtable-osdi06.pdf

Google

Programming Abstraction: MapReduce

* Represent problems as Map and Reduce step (inspired

by functional programming)

* Distribute data among many machines, execute same
computation at each machine on its dataset

* Infrastructure manages parallel execution

» Open source implementation: Hadoop

map(in_key, data)
-> list(key, value)

reduce(key, list(values))
- list(out_data)

|L|g|%|g|1| Dlalt|a

Group

http://research.google.com/archive/mapreduce.html

Google

Reduce
Task 1

key

Sort &
Group

Reduce

Task 2

@y

Language for Parallel Log Processing: Sawzall

« Commutative and associative operations allow parallel

execution and aggregati

on

» Language avoids specifying order by replacing loops with

guantifiers (constraints)

Input Filter

Transform

Output

Aggregate

3571234578

)

357578

ia%:

Count=6
Total = 35
Sum_sq =221

)3

sum, top, max

S\Amgswmw

count: table sum of int;
total: table sum of float;

x: Float = input;

emit count <- 1;
emit total <- Xx;

function(word: string): bool {

}:

when(i: some int;
word[i] '= word[$-1-i])
return false;
return true;

http://labs.google.com/papers/sawzall.html

Google

* @y

Google, the Cloud, and You!

accessible

powerful

pervasive

* @

Google Data API's &

« Standard protocol for reading and [coogle Apps
writing data on the web Google Base

eBased on Atom 1.0 and RSS 2.0
syndication formats, Google Data | coogle code search
extensions Google Contacts

* Atom Publishing Protocol

 Optimistic concurrency based on | Geogle Spreadsheets
version numbers: no locks

* AuthSub authentication scheme: YouTube
no stored passwords

Google

Blogger

Google Calendar

Google Health

Google Notebook

Picasa Web Albums

Google Documents

http://code.google.com/apis

@y

Simple Example: Google Calendar Feed &

Google

L Cabenda i v 4 Calendar 1o yeur iGozals Homepay
- . [Seoreh Futie Gondors]
Event Gregor's Conferences Details

| Please wse the following addiess 1o access your calendar from other applications, You can copy and paste this inte any feed reader,

slr! sibhnk caléndar googh

=]

Calendar Feed &

<entry>
<id>http://www.google.com/calendar/feeds/...</id>
<published>2007-08-19T19:29:25.000Z</published>
<updated>2007-09-28T17:56:20.000Z</updated>
<name>Gregor's Conferences</name>
<gd:comments>

<gd:feedLink href="http://www.google.com/calendar/feeds/..."/>

</gd:comments>
<gd:eventStatus value="http://schemas.google.com/g/2005#event.confirmed'/>
<gd:transparency value='http://schemas.google.com/g/2005#event.transparent'’/>
<gd:when startTime='2007-10-23"' endTime="2007-10-27'/>

<gd:who rel='http://schemas.google.com/g/2005#event.organizer'
valueString='Gregor's Conferences'
email="...@group.calendar.google.com'/>

<gd:where valueString='"Keystone Resort, Colorado'/>

</entry>

Google ¢ ‘\12

Google App Engine — Easy to Start, Easy to Scale

*Your code on Google infrastructure

* Python source code and run-time

*Develop locally, deploy to Cloud

*Write once, scale automatically

*Free quota of 5M pageviews / month and 500MB

storage Web Page
Py -
K’ Dashboard
Local . f < E _ J
Server Deploy > - E
Google
Your Computer Infrastructure

Google ‘@)

Programming & Run-time Model

*Responds to HTTP requests
* A programming platform, not “raw iron”

* API support for
» User login and identity
* Persistent state (on top of Bigtable, not RDBMS)
* memcache

Mail, Images, URL Fetch

Python libraries (not native code)

* Django Templates

* Automatic scaling

Google ¢ ‘\12

Google App Engine Success Stories

“We got a prototype of our new ‘Pix Chat’
OpenSocial app running in App Engine and the
Hi5 sandbox this morning. It took about 3 hours

to get the app serving and our db code
converted.”

PixVerse (now acquired by Hi5)

Google ‘@y

10

App Engine Example: Calendar Feedback

Google
Calendar
API
Browser
o "4-" | e
g - & B | ek sy -] K- i Atom (XML)
QCon San Francisco g Over http
:..::_n.:.. g to San Francisco... [LeitQaammpls. cos]
JAOO
wn..:::n:m. ™ Aartun? [testGerample. com] f G OOg Ie
S__emina_ir: Software Service Engineering = @ App Engine
E__u.mPI__oP
.ﬁ\OO _Sydney
.}ACIO Brisbane @
o L

Users Storage Memcache
http://gregortravel.appspot.com/ API

Google ¢ ‘a

Data Access

*Models and Entities declared in code

class Comment(db.Model):
author = db.UserProperty()
eventKey = db.StringProperty() Declaration
comment = db.StringProperty(multiline=True)
date = db.DateTimeProperty(auto_now_add=True)

comments = Comment.all()
comments.filter(“eventKey =", id)
comments.order(''-date’) (?ljery
for c in comments:
self.response.out.write(c.comment)

comment = Comment()

comment.author = users.get_current_user() Insert /
comment.comment = self.request.get(”content®)
comment.eventKey = self.request.get("id") LJp(jaIe

comment.put()

Google ¢ ‘@

Programming the Cloud

* Programming the cloud is exciting, but uses different
programming and run-time models

« Parallel execution, constraint-based programming
instead of linear loops

* Highly distributed data storage instead of RDBMS

* Live with the uncertainty: retry, compensation,
tentative operations

* Tools and API’'s can take make your live a lot easier,
but you have to do your part

Google e ‘@

Google and the Cloud

* Google Data API's
* Google App Engine
» Google Mashup Editor

» Academic Cloud Computing Initiative (IBM & Google)
* http://code.google.com/edu/parallel

* Developer community
* http://code.google.com/apis

*Open Source
» http://code.google.com/opensource/

Google)

12

