RES Tful Web Services
with Spring

Explained Using Airport Symbols

Arjen Poutsma
SpringSource




About me

Fifteen years of experience in Enterprise
Software Development

Six years of Web service experience
Development lead of Spring VWeb Services
Now working on Spring 3.0

Contributor to various Open Source
frameworks: (XFire, Axis2, NEG, ...)




Agenda

What is REST?

RESTful architecture & design
REST in Java

REST in Spring




What is REST?




What is

® Representational State
Transfer

® Architectural style

® Architectural basis for
HTTP




Resources

® Typically nouns V
® (Customer

® Orders
® Shopping cart

® Expressed by URIs




Uniform Interface




Uniform Interface




Uniform Interface




Uniform Interface




® Retrieves

Representation of
Resource

® Safe operation




GET is Cacheable

® Servers returns ETag
header

® Send on subsequent
retrieval

® [f not changed, 304 (Not
Modified) is returned




GET Example

GET /hotels
Host: example.com



http://www.mybank.com
http://www.mybank.com

GET Example

HTTP/1.1 200 OK
Date: ..
Content-Length: 1456

GET /hotels Content-Type:
Host: example.com application/xml

<hotels>

</hotels>



http://www.mybank.com
http://www.mybank.com

Conditional GET

GET /hotels
Host: example.com




Conditional GET

GET /hotels
Host: example.com HTTP/1.1 200 OK
Date: ..

Content-Length: 1456




Conditional GET

GET /hotels
Host: example.com HTTP/1.1 200 OK
Date:

Content-Length: 1456

GET /hotels

Host: example.com




Conditional GET

GET /hotels
Host: example.com HTTP/1.1 200 OK
Date:

Content-Length: 1456

GET /hotels HTTP/1.1
Date: ..

ETag: "b4bdb3"
Content-Length: O

Host: example.com




Updates resource

Creates resource, when
the destination URI is
known

ldempotent




PUT Example

PUT /hotels/2
Host: example.com

<hotel>

</hotel>




PUT Example

PUT /hotels/2

Host: example.com HTTP/1.1 201 Created

Date:

<hotel> Content-Length: O

</hotel>




POST

Creates new Resource
Child of other Resource

Response Location
header is used to

indicate URI of child




POST Example

POST /hotels/1/
bookings
Host: example.com

<booking>

</booking>




POST Example

POST /hotels/1/ HTTP/1.1 201 Created

bookings Date:
Host: example.com Content-Length: 0
ocation:

<booking>

</booking>



http://mybank.com
http://mybank.com
http://mybank.com
http://mybank.com

DELETE

® Deletes a resource

® |dempotent




DELETE Example

DELETE /hotels/3
Host: example.com




DELETE Example

HTTP/1.1 204 No Content
Date: ..
Content-Length: 0

DELETE /hotels/3
Host: example.com




Representations

Access resource through

representations ‘ ‘
More that one

representation possible

Desired representation
in Accept header

® Or file extension

Delivered representation
show in Content-Type




Stateless conversation

Server does not
maintain state

® No HTTP Session!

Client maintains state
through links

Very scalable

Loose coupling




Hypermedia

Resources contain links

Client state transitions
are made through these
links

Links are provided by
server

XLink

Seamless evolution




RES Tful architecture




RES Tful Architecture

OrderManagementService
+ getOrders()
+ submitOrders()
+ getOrderDetails()
+ getOrdersForCustomers()
+ updateOrder()
+ addOrderltem()
+ cancelOrder()

CustomerManagementService
+ getCustomers()
+ addCustomer()
+ getCustomerDetails()
+ updateCustomer()
+ deleteCustomer()




RES Tful Architecture

/orders
GET - list all orders
PUT - unused
POST - add a new order
DELETE - unused

/orders/{id}
GET - get order details
PUT - update order
POST - add item
DELETE - cancel order

«interface» /customers
Resource

GET - list all customers
GET PUT - unused
PUT

POST - add new customer
POST DELETE - unused
DELETE unuse

/customers/id}
GET - get customer details
PUT - update customer
POST - unused
DELETE - delete customer

/customers/id}/orders
GET - get all orders for customer
PUT - unused
POST - add order

DELETE - cancel all customer orders
T —




RES Ttul application
design

|. Design URIs
2. Select representations
3. ldentify method semantics

4. Select response codes




Advantages

® Widely supported
® | anguages
® Scripts
® Browsers

® |t works!




Advantages

Scalability
Redirects (versioning)
Caching

Different representations (no more
attachment hell!)

|dentification




y 4

REST in Spring 3



Uri Templates

@Controller
public class HotelController {

@RequestMapping (value="/hotels/{id}", method=RequestMethod.GET)
public String getHotel (@PathParam String id) ({
// use 1id

return "someView";

}

@RequestMapping (value="/hotels/{id}/bookings", method=RequestMethod.POST)
public void addBooking (@PathParam String id, Booking booking) {
// store booking

}

-
e




Representations

® View resolution

o XML

® Spring-WS OXM
e |SON
® Atom, RSS

® Flex




Rest [emplate

® Restlemplate as core client-side
component

® Similar to other templates in Spring
® |dbcTemplate
® |msTemplate

® VWebServiceTemplate




Rest [emplate methods

® getForObject

® Performs GET and converts
® put

® Performs PUT
® postForlLocation

® Performs POST, and retrieves Location
header

® delete



Rest [emplate

String uri = "http://example.com/hotels/{id}"

template = new RestTemplate() ;

Hotellist result = template.getForObject (uri,
Hotellist.class, "1");

Booking booking =

uri = "http://example.com/hotels/{id}/bookings";

Map<String, String> wvars = Collections.singletonMap('"id", "1");
URI location = template.postForlocation(uri, booking, wvars)

template.delete (location. toString()) ;
template.execute (uri, HttpMethod.GET,

myRequestCallback,
myResponseCallback) ;




Time Line

® Part of Spring 3.0

® PathParam in 3.0 M| ‘ @
(October)

® Rest follows later

® 3.0 Final planned for
early 2009







