
0-0



Copyright c© 2008 Sun Microsystems, Inc. (”Sun”). All rights

are reserved by Sun except as expressly stated as follows.

Permission to make digital or hard copies of all or part of this

work for personal or classroom use is granted, provided that

copies are not made or distributed for profit or commercial

advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, or republish, to post on

servers, or to redistribute to lists, requires prior specific written

permission of Sun.

1



Fortress Status Report

• Fortress is a growable, mathematically oriented, parallel

programming language

• Started under Sun/DARPA HPCS program, 2003–2006

• Fortress is now an open-source project with international

participation

• The Fortress 1.0 release (March 2008) synchronized the

specification and implementation

• Moving forward, we are growing the language and libraries

and developing a compiler

2



With Multicore, a Profound Shift

• Parallelism is here, now, and in our faces

> Academics have been studying it for 50 years

> Serious commercial offerings for 25 years

> But now it’s in desktops and laptops

• Specialized expertise for science codes and databases and

networking

• But soon general practitioners must go parallel

3



The bag of programming tricks

that has served us so well

for the last 50 years

is

the wrong way to think

going forward and

must be thrown out.

4



Why?
• Good sequential code minimizes total number of operations.

> Clever tricks to reuse previously computed results.

> Good parallel code often performs redundant operations

to reduce communication.

• Good sequential algorithms minimize space usage.

> Clever tricks to reuse storage.

> Good parallel code often requires extra space to permit

temporal decoupling.

• Sequential idioms stress linear problem decomposition.

> Process one thing at a time and accumulate results.

> Good parallel code usually requires multiway problem

decomposition and multiway aggregation of results.
5



Let’s Add a Bunch of Numbers

SUM = 0 // Oops!

DO I = 1, 1000000

SUM = SUM + X(I)

END DO

Can it be parallelized?

6



Let’s Add a Bunch of Numbers

SUM = 0 // Oops!

DO I = 1, 1000000

SUM = SUM + X(I)

END DO

Can it be parallelized?

This is already bad!

Clever compilers have to undo this.

7



What Does a Mathematician Say?

1000000∑
i=1

xi or maybe just

∑
x

Compare Fortran 90 SUM(X).

What, not how.

No commitment yet as to strategy. This is good.

8



Sequential Computation Tree

SUM = 0

DO I = 1, 1000000

SUM = SUM + X(I)

END DO

9



Atomic Update Computation Tree

SUM = 0

PARALLEL DO I = 1, 1000000

ATOMIC SUM = SUM + X(I)

END DO

10



Parallel Computation Tree

What sort of code

should we write

to get a computation

tree of this shape?

What sort of code

would we like

to write?

11



Finding the Length of a LISP List

Recursive:

(define length (list)

(cond ((null list) 0)

(else (+ 1 (length (rest list))))))

12



Finding the Length of a LISP List

Iterative:

(define length (list)

(do ((x list (rest x))

(n 0 (+ n 1)))

((null x) n)))

13



Length of an Object-Oriented List

class List<T> {
abstract int length();

}
class Empty extends List {

int length() { return 0; }
}
class Node<T> extends List<T> {

T first;

List<T> rest;

int length() { return 1 + rest.length(); }
}

14



Linear versus Multiway Decomposition

• These are important program decomposition strategies,

but inherently sequential.

> Mostly because of the linearly organized data structure.

> Compare Peano arithmetic: 5 = ((((0+1)+1)+1)+1)+1

> Binary arithmetic is much more efficient than unary!

• We need a multiway decomposition paradigm:

length [ ] = 0

length [a] = 1

length (a++b) = (length a) + (length b)

This is just a summation problem: adding up a bunch of 1’s!

15



Splitting a String into Words (1)

• Given: a string

• Result: List of strings, the words separated by spaces

> Words must be nonempty

> Words may be separated by more than one space

> String may or may not begin (or end) with spaces

16



Splitting a String into Words (2)
• Tests:

println words(“This is a sample”)

println words(“ Here is another sample ”)

println words(“JustOneWord”)

println words(“ ”)

println words(“”)

• Expected output:

〈 This, is, a, sample 〉
〈 Here, is, another, sample 〉
〈 JustOneWord 〉
〈 〉
〈 〉

17



Splitting a String into Words (3)
words(s: String) = do

result : ListJStringK := 〈 〉
word : String := “”

for k ← seq(0 # length(s)) do

char = substring(s, k, k + 1)

if (char = “ ”) then

if (word 6= “”) then result := result ‖ 〈word 〉 end
word := “”

else

word := word ‖ char
end

end

if (word 6= “”) then result := result ‖ 〈word 〉 end
result

end

18



Splitting a String into Words (4)

19



Splitting a String into Words (5)

maybeWord(s: String): ListJStringK =

if s = “” then 〈 〉 else 〈 s 〉 end

trait WordState

extends {AssociativeJWordState,⊕K }
comprises {Chunk, Segment }

opr ⊕(self, other : WordState): WordState

end

20



Splitting a String into Words (6)
object Chunk(s: String) extends WordState

opr ⊕(self, other : Chunk): WordState = Chunk(s ‖ other .s)
opr ⊕(self, other : Segment): WordState =

Segment(s ‖ other .l, other .A, other .r)
end

object Segment(l: String, A: ListJStringK, r: String)

extends WordState

opr ⊕(self, other : Chunk): WordState =

Segment(l, A, r ‖ other .s)
opr ⊕(self, other : Segment): WordState =

Segment(l, A ‖maybeWord(r ‖ other .l) ‖ other .A, other .r)
end

21



Splitting a String into Words (7)

processChar(c: String): WordState =

if (c = “ ”) then Segment(“”, 〈 〉, “”)

else Chunk(c)

end

words(s: String) = do

g =
⊕

k←0#length(s)

processChar(substring(s, k, k + 1))

typecase g of

Chunk⇒ maybeWord(g.s)

Segment⇒ maybeWord(g.l) ‖ g.A ‖maybeWord(g.r)

end

end
22



What’s Going On Here?

Instead of linear induction

with one base case (empty),

we have multiway induction

with two base cases (empty and unit).

Why are these two base cases important?

23



Representation of Abstract Collections

24



Associativity

25



Catamorphism: Summation

26



Computation: Summation

27



Catamorphism: Lists

28



Computation: Lists

29



Representation: Lists

30



Catamorphism: Loops

for i← seq(1 : 4) do print i end

for i← 1 : 4 do print i end

Generators can modify the catamorphism

and so control the parallelism. 31



To Summarize: A Big Idea

• Loops and summations and list constructors are alike!

for i← 1 : 1000000 do xi := x2
i end∑

i←1:1000000

x2
i

〈x2
i | i← 1 : 1000000 〉

> Generate an abstract collection

> The body computes a function of each item

> Combine the results (or just synchronize)

• Whether to be sequential or parallel is a separable question

> That’s why they are especially good abstractions!

> Make the decision on the fly, to use available resources
32



Another Big Idea

• Formulate a sequential loop as successive applications of

state transformation functions fi

• Find an efficient way to compute and represent compositions

of such functions (this step requires ingenuity)

• Instead of computing

s := s0; for i← seq(1 : 1000000) do s := fi(s) end ,

compute s := ( ◦
i←1:1000000

fi) s0

• Because function composition is associative, the latter has a

parallel strategy

• In the “words in a string” problem, each character can be

regarded as defining a state transformation function

33



We Need a New Mindset
• DO loops are so 1950s!

• So are linear linked lists!

• JavaTM-style iterators are so last millennium!

• Even arrays are suspect!

• As soon as you say “first, SUM = 0” you are hosed.

Accumulators are BAD.

• If you say, “process subproblems in order,” you lose.

• The great tricks of the sequential past DON’T WORK.

• The programming idioms that have become second nature to

us as everyday tools DON’T WORK.

34



Fortress: A Parallel Language

High productivity for multicore, SMP, and cluster computing

• Hard to write a program that isn’t potentially parallel

• Support for parallelism at several levels

> Expressions

> Loops, reductions, and comprehensions

> Parallel code regions

> Explicit multithreading

• Shared global address space model with shared data

• Thread synchronization through atomic blocks and

transactional memory

35



These Are All Potentially Parallel

f(a) + g(b) L = 〈 find(k, x) | k ← 1 :n, x← A 〉

s =
∑

k←1:n

ck x
k

for k ← 1 :n do

ak := bk
sum += ck x

k

end

do

f(a)

also do

g(b)

end

do

T1 = spawn f(a)

T2 = spawn g(b)

T1.wait();T2.wait()

end
36



Mathematical Syntax 1

Integrated mathematical and object-oriented notation

• Supports a stylistic spectrum that runs from Fortran

to JavaTM—and sticks out at both ends!

> More conventionally mathematical than Fortran
− Compare a*x**2+b*x+c and a x2 + b x+ c

> More object-oriented than Java
− Multiple inheritance
− Numbers, booleans, and characters are objects

> To find the size of a set S : either |S| or S.size
− If you prefer #S , defining it is a one-liner.

37



Mathematical Syntax 2

• Full Unicode character set available for use, including

mathematical operators and Greek letters:

× ÷ ⊕ ª ⊗ ® ¯ ≈ α β γ δ

¢ ¯ £ ↔ ∧ ∨ ≡ 6≡ ε ζ η θ

≤ ≥ ∑ ∏ ≺ 4 < Â ι κ λ µ

∩ ∪ ] ⊂ ⊆ ⊇ ⊃ ∈ ξ π ρ σ

u t @ v w A ¬ 6∈ φ χ ψ ω

b c d e 〈 〉 f g Γ Θ and so on

• Use of “funny characters” is under the control of libraries

(and therefore users)

38



Visit http://projectfortress.sun.com

An open-source project with international participation

• Open source since January 2007

• University participation includes:

> University of Tokyo: matrix algorithms

> Rice University: code optimization

> Aarhus University: syntactic abstraction

> University of Texas at Austin: static type checking

• Also participation by many individuals

39



A Growing Library

The Fortress library now includes over 12,000 lines of code.

• Integer, floating-point, and string operations

• Big integers, rational numbers, intervals

• Collections (lists, sets, maps, heaps, etc.)

• Multidimensional arrays

• Sparse vectors and matrices

• Generators and reducers

> Implement loops, comprehensions, and reductions

> Support implicit parallelism

• Fortress abstract syntax trees

• Sorting
40



Tools: ‘Fortify’ Code Formatter

• Emacs-based tool

• Fortress programs can be typed on ASCII keyboards

• Code automatically formatted for processing by LATEX

sum: RR64 := 0

for k<-1:n do

a[k] := (1-alpha)b[k]

sum += c[k] x^k

end

sum:R64 := 0

for k ← 1 :n do

ak := (1− α)bk
sum += ck x

k

end

All code on these slides was formatted by this tool.

41



Tools: Editing Environments

• Fortress mode for Emacs

> Provides syntax coloring

> Some automatic formatting

> Unicode font conversion

• Fortress NetBeansTM plug-in

> Syntax highlighting

> Mark occurrences

> Instant rename

• These tools were contributed by people outside Sun

42



Syntax Coloring Screen Shot

43



Fortress 1.0
• With the Fortress 1.0 release in March 2008, we

synchronized the specification and implementation

• Implementation expanded and made more reliable since

Fortress 1.0β

• Many features in the 1.0β specification were removed for 1.0

> But with every intention of adding them back as the

language grows

> And we have done so over the last six months

44



What works NOW
• Parallelism in loops, reductions, comprehensions, tuples

• Automatic load balancing via work-stealing

for i← 0 # |children ′| do
children ′i := generate tailJKey,ValK(children i+lsize+1, 1)

end

factorial(n:Z32) =
∏

i←1:n

i

opr (n:Z32)! =
∏

i←1:n

i

〈x2 | x← {0, 1, 2, 3, 4, 5}, x MOD 2 = 0〉

45



What works NOW
• Spawn

spawn do

s := DoneJT K(old .val())
end

46



What works NOW
• Atomic blocks with transactional memory

attempt(): (StateJT K,Boolean) = atomic do

old = s

computed := old .isDone()

if ¬old .isDone() then

if old .isPending() then abort() end

s := PendingJT K
(old , true)

else

(old , false)

end

end
47



What works NOW
• Object-oriented type system with multiple inheritance

• Overloaded methods and operators with dynamic

multimethod dispatch

• Sets, arrays, lists, maps, skip lists

• Pure queues, deques, priority queues

• Integers, floating-point, strings, booleans

• Big integers, rational numbers, interval arithmetic

• Syntactic abstraction (just barely)

48



Next steps:

• Full static type checker (almost there!)

• Static type inference to reduce “visual clutter”

• Parallel nested transactions

• Compiler

> Initially targeted to JVM for full multithreaded platform

independence

> After that, VM customization for Fortress-specific

optimizations

49



The Parallel Future
• We need to teach new strategies for problem decomposition.

> Data structure design/object relationships

> Algorithmic organization

> Don’t split a problem into “the first” and “the rest.”

> Do split a problem into roughly equal pieces.

Then figure out how to combine general subsolutions.

> Often this makes combining the results a bit harder.

• We need programming languages and runtime

implementations that support parallel strategies and hybrid

sequential/parallel strategies.

• We must learn to manage new space-time tradeoffs.

50



Conclusion
• A program organized according to linear problem

decomposition principles can be really hard to parallelize.

• A program organized according to parallel problem

decomposition principles is easily run either in parallel or

sequentially, according to available resources.

• The new strategy has costs and overheads. They will be

reduced over time but will not disappear.

• This is our only hope for program portability in the future.

51



It is an exciting time for the project

• External contributions and feedback are increasing

> Thank you!

• Many implementation tasks are being done outside Sun

• The language is growing

• A community of developers is participating in its evolution

52



52-1


