
© 2008 IBM Corporation

APIs - Lines in the Sand

Jim des Rivières, IBM
Jim_des_rivieres@ca.ibm.com

2 © 2008 IBM Corporation – APIs: Lines in the Sand- Jim des Rivières – JAOO 2008

3 © 2008 IBM Corporation – APIs: Lines in the Sand- Jim des Rivières – JAOO 2008

Modules, abstractions, APIs, …

These notions are

Ubiquitous

Economically important

Thriving

Not new

4 © 2008 IBM Corporation – APIs: Lines in the Sand- Jim des Rivières – JAOO 2008

Why so important?

Inner working of human-built computer system need to be
scrutable

Individual human mind has limited working capacity

Teams of humans can only design and build systems they are able to
understand

APIs and abstractions are the only known way to achieve
scrutability at any scale

Divide and conquer

Scales linearly in size of program

Essential aspect of all large software systems
API stacks, built abstraction upon abstraction, layer upon layer - like
coral reefs

5 © 2008 IBM Corporation – APIs: Lines in the Sand- Jim des Rivières – JAOO 2008

Programmers struggle with APIs

APIs and abstractions take work

Programmers constantly struggle with them

Why?

What we can do about it?

6 © 2008 IBM Corporation – APIs: Lines in the Sand- Jim des Rivières – JAOO 2008

Struggles with APIs

Theme for talk

Sampler of our struggles
1. Our tools

2. Drawing API lines

3. Our methodologies

4. Our natures

7 © 2008 IBM Corporation – APIs: Lines in the Sand- Jim des Rivières – JAOO 2008

Vocabulary

Client

Component A

Implementation

Component B
API Uses Implements

API = specified programmatic interface between components

8 © 2008 IBM Corporation – APIs: Lines in the Sand- Jim des Rivières – JAOO 2008

Vocabulary

API = Application Programmer Interface
Specified programmatic interface between components

API spec is statement of intent
Captures how API is supposed to work

Establishes contracts between parties

API mediates interaction between client and implementation
Controls inter-component coupling

API spec and implementation play complementary roles
Both critically important

9 © 2008 IBM Corporation – APIs: Lines in the Sand- Jim des Rivières – JAOO 2008

1. Struggles with APIs - Our tools

Relentlessly refactor code to improve scrutability

Refactoring tools help us
Tool has awareness of language semantics

Can apply meaning-preserving transformations

10 © 2008 IBM Corporation – APIs: Lines in the Sand- Jim des Rivières – JAOO 2008

Bull in a china shop

Refactoring tools are dangerous where APIs are involved
Will propose refactoring across API boundaries

Will propose changes to API signatures

Tools are blind to this important aspect of program

11 © 2008 IBM Corporation – APIs: Lines in the Sand- Jim des Rivières – JAOO 2008

What can we do about it?

Tools can be more helpful if they are API-aware

Programmer can map out where APIs are

Example: Eclipse PDE has map for plug-in’s APIs
Eclipse nightly build compares APIs to baseline

Report API changes, and classify as potentially breaking

Refactoring tool can use API map when proposing refactorings

12 © 2008 IBM Corporation – APIs: Lines in the Sand- Jim des Rivières – JAOO 2008

2. Struggles with APIs - Drawing API lines

Common question: How to add API to existing program?
Program not written with API in mind

They can identify a subset of classes and methods they feel
comfortable letting consumers call

Mark these public; mark rest private

Add Javadoc

They can write unit tests

Is there anything else?

13 © 2008 IBM Corporation – APIs: Lines in the Sand- Jim des Rivières – JAOO 2008

It's not a lie. It's a gift for fiction.

API is like spy’s cover story in a Le Carré novel

Make cover story compelling so you won’t have to reveal truth
Self-consistent, no gaps, no gaffs

14 © 2008 IBM Corporation – APIs: Lines in the Sand- Jim des Rivières – JAOO 2008

A Convenient Fiction

Designing API and writing spec is constructing believable story
for consumers

Consumers take story at face value

Implementation is constrained to observable behavior
Story appears true as far as consumers can tell

Implementation can be arbitrarily complex
E.g., JIT compiler implementing bytecode interpreter

Have cake and eat it too

15 © 2008 IBM Corporation – APIs: Lines in the Sand- Jim des Rivières – JAOO 2008

Mixing genres

Adding an API to existing program - hard

Adding an API to existing program without breaking existing
clients – nigh impossible

Bad to let shape of program dictate shape of API
API will be harder for consumers to use

API will not provide enough cover for implementation

16 © 2008 IBM Corporation – APIs: Lines in the Sand- Jim des Rivières – JAOO 2008

What do we do about it?

Set wad to the side temporarily
Design API to give consumer what they really need
Write test suites
Cannibalize wad for implementation

If an API is in the cards, usually cheaper to do it from outset
rather than later

API First methodology

17 © 2008 IBM Corporation – APIs: Lines in the Sand- Jim des Rivières – JAOO 2008

3. Struggles with APIs - Our methodologies

Write program sketch – stubs for classes and methods
Write unit tests that check program has desired behavior
Write implementation of desired behavior

Loop
 Run tests
 Exit if all tests green
 Debug program
End

To later change desired behavior
Update tests to reflect behavior now desired

Update implementation

Rerun test-debug loop

Development method maintains invariant
Program implements desired behavior

Test suite capable of verifying program implements desired behavior

18 © 2008 IBM Corporation – APIs: Lines in the Sand- Jim des Rivières – JAOO 2008

Beating around the bush

Good – unit tests capitalize on programmer’s skill at writing
programs

Not so good – intended behavior is captured implicitly

How does a consumer learn of program behavior?
Read program code?

Read test suites?

Fails to address what consumers need to use program

19 © 2008 IBM Corporation – APIs: Lines in the Sand- Jim des Rivières – JAOO 2008

What can we do about it?

Recognize central role played by API specs
Spec explicitly captures intent in form consumer can use

Design API by writing API specs (Javadoc) for classes, methods, etc.
Write unit tests from specs
Write implementation from specs
Perform test-debug loop until tests run green

To later change API
Update API specs to reflect behavior now desired

Update unit tests and implementation based on revised specs

Rerun test-debug loop

Development method maintains invariant
Full API specs providing story for consumers

Program implementing API to spec

Test suite verifying program implements API to spec

Test First methodology -> API First methodology

20 © 2008 IBM Corporation – APIs: Lines in the Sand- Jim des Rivières – JAOO 2008

4. Struggles with APIs - Our natures

21 © 2008 IBM Corporation – APIs: Lines in the Sand- Jim des Rivières – JAOO 2008

Programmers have natural bias for action

We are professional programmers

We get paid to BUILD systems that DO something

22 © 2008 IBM Corporation – APIs: Lines in the Sand- Jim des Rivières – JAOO 2008

Guerilla programming

Task: write program to extract data for a one-time report
Data is in these databases

Accessible through unfamiliar API

Deadline: tomorrow

How would you go about it?

23 © 2008 IBM Corporation – APIs: Lines in the Sand- Jim des Rivières – JAOO 2008

Would you?

A. Carefully read API doc so you could use API correctly

C. Handle rare conditions that do not arise during execution

E. Write test suites

G. Design new APIs and abstractions

I. Write documentation

K. None of the above

24 © 2008 IBM Corporation – APIs: Lines in the Sand- Jim des Rivières – JAOO 2008

Or would you?

Cobble together snippets from example programs that use API

Write and debug and experiment on the fly

Wing it

25 © 2008 IBM Corporation – APIs: Lines in the Sand- Jim des Rivières – JAOO 2008

26 © 2008 IBM Corporation – APIs: Lines in the Sand- Jim des Rivières – JAOO 2008

Programmer’s psyche

Recognize in yourself this powerful attraction

Purely mechanistic side of programming

Nothing except “here” and “now”

No rules other than what works

Scrutability is minor consideration

27 © 2008 IBM Corporation – APIs: Lines in the Sand- Jim des Rivières – JAOO 2008

Commercial/industrial programming

What we do day-to-day as programmers is not unrelated
Circumstances differ from guerilla programming

Program execution context
“there and then” vs. “here and now”

Program development context
Write, test, and debug out of context vs. in context

*Program size
Large vs. small

*Program lifetime
Long-lived vs. one-shot

*Development team
Teams of programmers vs. solo programmer

* Last 3 push on scrutability

28 © 2008 IBM Corporation – APIs: Lines in the Sand- Jim des Rivières – JAOO 2008

Programmer recidivism

Common cause of low quality code: Programmer falls back on
guerilla programming practices in context where inappropriate

Insufficient familiarity with APIs they are using

Omit handling for rare program conditions

Insufficient testing

Unaware of API boundaries already in place

Insufficient concern for program scrutability

29 © 2008 IBM Corporation – APIs: Lines in the Sand- Jim des Rivières – JAOO 2008

Other Symptoms

Procrastination on defining an API
Disengagement from writing specifications
No process for maintaining and evolving API

30 © 2008 IBM Corporation – APIs: Lines in the Sand- Jim des Rivières – JAOO 2008

What can we do about it?

Acknowledge that some programmers are drawn more strongly
to mechanistic side of programming than others

Provide training, practice, support

Choose/assign programming tasks accordingly
Tasks relying heavily on non-mechanistic aspects

Designing and evolving APIs

Tasks relying more on mechanistic aspects
Implementing APIs

Testing, debugging

31 © 2008 IBM Corporation – APIs: Lines in the Sand- Jim des Rivières – JAOO 2008

Concluding remarks

APIs, abstractions, modules etc. are crucial to most everything
we do

In many cases, more lasting value in API spec that in code for
implementations or clients; e.g. HTTP spec

APIs are “soft” properties of computer system, not “hard”
(mechanistic) ones

Do not appeal to programmer’s bias for action
Many practices, tools, methodologies are colored by same bias
for action

No surprise - developed by programmers for programmers

But they can be improved to help with APIs too
Challenge: Analyze your own individual and team work habits.
Are you there places where a bias for action is downplaying
APIs?

32 © 2008 IBM Corporation – APIs: Lines in the Sand- Jim des Rivières – JAOO 2008

Questions
?

33 © 2008 IBM Corporation – APIs: Lines in the Sand- Jim des Rivières – JAOO 2008

Thank you

34 © 2008 IBM Corporation – APIs: Lines in the Sand- Jim des Rivières – JAOO 2008

Some API-related Resources
API First
http://www.eclipsecon.org/2005/presentations/EclipseCon2005_12.2APIFirst.pdf
Eclipse APIs: Lines in the Sand
http://www.eclipsecon.org/2004/EclipseCon_2004_TechnicalTrackPresentations/02_des_Rivieres.pdf
How to Use the Eclipse API
http://www.eclipse.org/articles/Article-API%20use/eclipse-api-usage-rules.html
Effective Java, by Josh Bloch
http://java.sun.com/docs/books/effective/
Evolving Java-based APIs
http://eclipse.org/eclipse/development/java-api-evolution.html
Eclipse API Central
http://wiki.eclipse.org/API_Central

http://www.eclipsecon.org/2005/presentations/EclipseCon2005_12.2APIFirst.pdf
http://www.eclipsecon.org/2004/EclipseCon_2004_TechnicalTrackPresentations/02_des_Rivieres.pdf
http://www.eclipse.org/articles/Article-API use/eclipse-api-usage-rules.html
http://java.sun.com/docs/books/effective/
http://eclipse.org/eclipse/development/java-api-evolution.html
http://wiki.eclipse.org/API_Central

