
REST:
Intro, Patterns
& Anti-Patterns
Stefan Tilkov | innoQ | stefan.tilkov@innoq.com

What is
REST?

3
Definitions

1

REST: An Architectural Style
One of a number of “architectural styles”

... described by Roy Fielding in his
 dissertation

... defined via a set of constraints that have to
 be met

... architectural principles underlying HTTP,
 defined a posteriori

... with the Web as one particular instance

See: http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

2

REST: The Web Used Correctly

A system or application architecture

... that uses HTTP, URI and other Web
 standards “correctly”

... is “on” the Web, not tunneled through it

... also called “WOA”, “ROA”, “RESTful HTTP”

3

REST: XML without SOAP

Send plain XML (w/o a SOAP Envelope) via
HTTP

... violating the Web as much as WS-*

... preferably use GET to invoke methods

... or tunnel everything through POST

... commonly called “POX”

Only option 1 is the right
one

(because Roy said so)

But we’ll go with option 2
(and equate “REST” with
“RESTful HTTP usage”)

and avoid option 3
like the plague

REST
Explained
in 5 Easy

Steps

1. Give Every “Thing” an ID

http://example.com/customers/1234

http://example.com/orders/2007/10/776654

http://example.com/products/4554

http://example.com/processes/sal-increase-234

2. Link Things To Each Other

<order self=’http://example.com/orders/1234’>
 <amount>23</amount>
 <product ref=’http://example.com/products/4554’ />
 <customer ref=’http://example.com/customers/1234’ />
</order>

3. Use Standard Methods

GET Retrieve information, possibly cached

PUT Update or create with known ID

POST Create or append sub-resource

DELETE (Logically) remove

4. Allow for Multiple
“Representations”

GET /customers/1234
Host: example.com
Accept: application/vnd.mycompany.customer+xml

GET /customers/1234
Host: example.com
Accept: text/x-vcard

<customer>...</customer>

begin:vcard
...
end:vcard

5. Communicate Statelessly
GET /customers/1234
Host: example.com
Accept: application/vnd.mycompany.customer+xml

time

<customer><order ref=’./orders/46’</customer>

GET /customers/1234/orders/46
Host: example.com
Accept: application/vnd.mycompany.order+xml

<order>...</order>

shutdown
update software
replace hardware
startup

What’s cool
about REST?

interface Resource {
 Resource(URI u)
 Response get()
 Response post(Request r)
 Response put(Request r)
 Response delete()
}

generic

specific

class CustomerCollection : Resource {
 ...
 Response post(Request r) {
 id = createCustomer(r)
 return new Response(201, r)
 }
 ...
}

Any HTTP client
(Firefox, IE, curl, wget)

Any HTTP server

Caches

Proxies

Google, Yahoo!, MSN

Anything that knows
your app

interface Resource {
 ...
}

generic

specific

class CustomerCollection : AtomFeed {
 ...
}

Anything that
understands HTTP

Anything that knows
your app

class AtomFeed : Resource {
 AtomFeed get()
 post(Entry e)
 ...
}

Any feed reader

Any AtomPub client

Yahoo! Pipes

Mapping Examples
getFreeTimeSlots(Person) →GET /people/{id}/timeslots?state=free

rejectApplication(Application)
→POST /rejections↵
 <application>http://...</application>↵
 <reason>Unsuitable for us!</reason>

performTariffCalculation(Data)

→POST /calculations↵
 Data
←Location: http://.../calculations/4711
→GET /calculations/4711
←Result

shipOrder(ID)
→PUT /orders/0815↵
 <status>shipped</status>

shipOrder(ID) [variation]
→POST /shipments↵
 Data
←Location: http://.../shipments/4711

REST Anti-
Patterns

http://www.flickr.com/photos/stygiangloom/230412544/

Tunneling
Through

GET

http://example.com/some-api?method=deleteCustomer&id=13
http://example.com/some-api?method=insert&name=Smith

http://www.markbaker.ca/blog/2005/04/14/accidentally-restful/

http://example.com/some-api?method=findCustomer&id=13
http://example.com/customers/13

RESTfulAccidentally

http://www.flickr.com/photos/stygiangloom/230412544/

Tunneling
Through

POST

(a.k.a. The SOAP Way)

POST http://example.com/CustomerMgmt
<soap:Envelope
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <deleteCustomer xmlns="http://example.com/ns1">
 <customerId>13</customerId>
 </ns:deleteCustomer>
 </soap:Body>
</soap:Envelope>

Method ID Endpoint

“Endpoint”?

Ignoring
Caching

t

ServerClient

Representation

GET /xyz

Resource

200 OK

Vary: Accept-Encoding,User-Agent

Cache-Control: max-age=7200

Expires: Tue, 30 Sep 2008 19:30:56 GMT

ETag: 283728

ServerClient

ResourceCached

Copy

ServerClient

ResourceCached

Copy

GET /xyz

If-None-Match: "283728"

304 Not Modified

Ignoring
Response

Codes

100 Continue
101 Switching Protocols
200 OK
201 Created
202 Accepted
203 Non-Authoritative
204 No Content
205 Reset Content
206 Partial Content
300 Multiple Choices
301 Moved Permanently
302 Found
303 See Other
304 Not Modified
305 Use Proxy
307 Temporary Redirect
400 Bad Request
401 Unauthorized
402 Payment Required
403 Forbidden

404 Not Found
405 Method Not Allowed
406 Not Acceptable
407 Proxy Authentication Required
408 Request Timeout
409 Conflict
410 Gone
411 Length Required
412 Precondition Failed
413 Request Entity Too Large
414 Request-URI Too Long
415 Unsupported Media Type
416 Requested Range Not Satisfiable
417 Expectation Failed
500 Internal Server Error
501 Not Implemented
502 Bad Gateway
503 Service Unavailable
504 Gateway Timeout
505 HTTP Version Not Supported

http://flickr.com/photos/rusvaplauke/1241256578/

Misusing
Cookies

RESTful Cookie Recipe
Ingredients:

‣ 1 server-side secret
‣ user name/password validation on server (LDAP,

DB, ...)

Approach:

‣ ask user for name and password if no cookie passed
‣ authenticate user
‣ create auth token as username + expiry date
‣ hash(auth token + server secret)
‣ return cookie as hash + auth_token
‣ server validates with algorithm on in-memory data

Forgetting
Hypermedia

Hypermedia Levels

Server

Resource

Server

Resource

Server

Resource

Representation Representation Representation

Client

Connectedness

HatEoAS

Ignoring MIME Types
http://flickr.com/photos/hiddenloop/195012229/

application/xml
Thing

Thing

Thing

application/vnd.mytype

Breaking Self-
descriptiveness

REST Patterns

Collection Resource

Context Related resources are accessed in groups

Solution Turn collection into resource,

Use links to point to contained
resources,

Include summary information for
contained resources

GET http://example.com/customers/
<?xml version="1.0" encoding="utf-8"?>
<customers xmlns="http://example.com/ns/crm">
 <base-uri>http://example.com</base-uri>
 <customer>
 <name>Company A</title>
 <link type="text/html" href="/customers/4711"/>
 ...
 </customer>
 ...
</customer>

Read-only View
Context Need for specialized views on one or

more collections or resources

Solution Create additional read-only list
resources,
Link to underlying resources

http://example.com/customers/
http://example.com/customers/?region=3
http://example.com/customer-addresses/
http://example.com/changes/customers/?limit=10
http://example.com/orders/2008/09/30/1200-1259

Stop Worrying
About URI Design

http://example.com/orders/2008/09/30/1200-1259

http://example.com/AD273AFCCB78898ADEEFCC22

Resource Creation
Context Resources are created concurrently and

need unique URIs

Solution POST contents to the collection that will
contain the resource
Receive 201 response code, (possibly
changed) representation and Location
header

Alternative Create UUID on client,
PUT content to {server URI}/{UUID}

Notification Polling
Context Clients need to know about updates to

resources

Solution Define View if needed,
Expose as RSS or Atom Feed,
Ensure correct cache control headers

Conflict Handling
Context Protect against concurrent modification

(lost update problem)

Solution Provide ETag and Last-Modified Headers,
Include preconditions,
Send correct 409/412 response codes for
unsafe methods

Named Link
Context Decouple client processing resource

connections

Solution Define link roles,
Build processing for roles,
Include links with role as attribute

<?xml version="1.0" encoding="utf-8"?>
<feed xmlns="http://www.w3.org/2005/Atom">
 <title type="text">dive into mark</title>
 <updated>2005-07-31T12:29:29Z</updated>
 <id>tag:example.org,2003:3</id>
 <link rel="alternate" type="text/html" hreflang="en" href="http://example.org/"/>
 <link rel="self" type="application/atom+xml" href="http://example.org/feed.atom"/>
 <entry>
 <title>Atom draft-07 snapshot</title>
 <link rel="alternate" type="text/html" href="http://example.org/2005/04/02/atom"/>
 <link rel="enclosure" type="audio/mpeg" length="1337" href="..."/>
 ...

Saved Search
Context Complex query input with mostly stable

result or “unsafe” query

Solution POST search criteria,
Receive result URI in Location header,
GET result (w/ cache control headers)

Conneg Extensions
Context Support linking to specific representation

formats, increase testability

Solution Provide generic resource with content
negotiation,
Provide distinct resources for one or
more representations mapped by
extension

GET http://example.com/customer/4711
GET http://example.com/customer/4711.xml
GET http://example.com/customer/4711.html

PUT/DELETE Tunneling

Context Firewalls or other tooling does not
support or blocks PUT and DELETE

Solution Use POST to tunnel PUT and DELETE,
Encode “true” verb in HTTP header or
hidden HTML form field

Canonical Representation
Context Ensure lowest common denominator of

processing

Solution Provide default HTML presentation for
reading
Enable www-form-data for simple
processing
Provide HTML for queries BaseResource

+ HTML get()
+ post(x-www-form-urlencoded)

Resource

Deep ETags

Context Reduce computation load on server

Solution Include ETag for resource presentations
returned from server,
Implement fast ETag checking w/o full
representation computation,
Return appropriate 304 response code

Externalized Server Cache
Context Simplify server caching implementation

Solution Get rid of server cache implementation,
Produce cache-control headers/ETags/
Last-Modified,
Implement Deep ETags,
Add caching intermediary

ServerClient

ResourceCached

Copy

GET /xyz
If-None-Match: 283728

304 Not Modified

Cache

Representation

Cached

Copy

Externalized Client Cache
Context Simplify client caching implementation

Solution Get rid of client cache implementation,
Add client caching intermediary

ServerClient

Resource

GET /xyz
If-None-Match: 283728

304 Not Modified

Cache

Representation

Cached

Copy

Transaction
Context Several resources have to be modified in

a single request

Solution Turn transaction into resource,

Modify transaction resource itself,
possibly in multiple steps

Finally PUT to transaction to commit all
changes

If You Want to Know
More

http://www.innoq.com/resources/REST

http://www.oreilly.com/catalog/9780596529260/

http://www.infoq.com/REST

Stefan Tilkov

Architectural Consulting

SOA

MDA MDSD

WS-* REST

MDE

J(2)EE RoR .NET

http://www.innoq.com/blog/st/

http://www.innoq.com

Thank you!
Any questions?

http://railsconsulting.de

REST ≠ CRUD

?

Resource ≠ Entity

Resource ≈ Model

Resource ≈ Controller

Database

Model

Controller

View

Browser

Application Layers

Data
(create, select, update, delete)

Business Rules
Relations

Control Flow
Aggregate Logic

Lib Utility Functions

Data Formatting

Presentation/UI

Application Layers &
Resources

Database

Model

Controller

View

Browser

Data
(create, select, update, delete)

Business Rules
Relations

Control Flow
Aggregate Logic

Lib Utility Functions

Data Formatting

Presentation/UI REST Client

Single Resource Model

Application

Resource

Resource

Resource

Browser (Other) REST Client

Everything doable
via UI …

… becomes
doable via API

UI Backend = API

RESTful APIs

RESTful APIs don’t expose low-level
details

Same layer – different abstraction

Value through uniformity and hypermedia

Mapping necessity: “Implement” HTTP
base interface

