INnnoQ

REST:

Intro, Patterns
& Anti-Patterns

Stefan Tilkov | innoQ | stefan.tilkov@innoq.com

3
Definitions

REST: An Architectural Style

One of a number of “architectural styles”

.. described by Roy Fielding in his
dissertation

.. defined via a set of constraints that have to
be met

.. architectural principles underlying HT TP,
defined a posteriori

.. with the Web as one particular instance

See: http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

REST: The Web Used Correctly

A system or application architecture

... that uses HT TP, URI| and other Web
standards “correctly”

... Is “on” the Web, not tunneled through it
... also called “WOA”, “ROA”, “RESTful HTTP”

REST: XML without SOAP

Send plain XML (w/o a SOAP Envelope) via

H

P

... violating the Web as much as WS-*

... preferably use GET to invoke methods

... or tunnel everything through POST

... commonly called “POX”

Only option 1 is the right

onhe
(because Roy said so)

But we’ll go with option 2

(and equate “REST” with
“RESTful HTTP usage”)

and avoid option 3
like the plague

REST
Explained
In 5 Easy

Steps

1. Give Every “Thing” an ID

http://example.com/customers/1234
http://example.com/orders/2007/10/776654
http://example.com/products/4554

http://example.com/processes/sal-increase-234

2. Link Things To Each Other

<order self="http://example.com/orders/1234°>
<amount>23</amount>
<product ref="http://example.com/products/4554° />
<customer ref="http://example.com/customers/1234° />
</order>

3. Use Standard Methods

GET

PUT

POST

DELETE

Retrieve information, possibly cached

Update or create with known ID
Create or append sub-resource

(Logically) remove

4. Allow for Multiple
“Representations”

GET /customers/1234
Host: example.com
Accept: application/vnd.mycompany.customer+xml

<customer>. . .</customer>

GET /customers/1234
Host: example.com
Accept: text/x-vcard

begin:vcard

end:vcard

.. update software
... replace hardware
... startup

5. Communicate Statelessly

GET /customers/1234
Host: example.com
Accept: application/vnd.mycompany.customer+xml

<customer><order ref=’./orders/46’</customer>

.. shutdown

GET /customers/1234/orders/46
Host: example.com
Accept: application/vnd.mycompany.order+xml

<order>...</order>

What’s cool
about REST?

interface Resource {
Resource(URI u)
Response get()
Response post(Request r)
Response put(Request r)
Response delete()

class CustomerCollection : Resource {

Response post(Request r) {
1d = createCustomer(r)

return new Response(201, r)

generic

A

v

specific

Any HTTP client

(Firefox, IE, curl, wget)

Any HTTP server
Caches

Proxies

Google,Yahoo!, MSN

Anything that knows

your app

generic

A

Anything that
interface Resource { understands HTTP
}
class AtomFeed : Resource {

AtomFeed get() Any feed reader
post(Entry) Any AtomPub client
} Yahoo! Pipes
class CustomerCollection : AtomFeed { Anything that knows
y your app
\ 4

specific

OrderManagementService

+ getOrders()

+ submitOrder()

+ getOrderDetails()

+ getOrdersForCustomers()
+ updateOrder()

+ addOrderltem()

+ cancelOrder()

/orders

[——

GET - list all orders
PUT - unused

POST - add a new order
DELETE - unused

/orders/id}

GET - get order details
PUT - update order
POST - add item
DELETE - cancel order

«interface»
Resource

CustomerManagementService

GET
PUT
POST
DELETE

/customers
GET - list all customers
PUT - unused

POST - add new customer
DELETE - unused

+ getCustomers()

+ addCustomer()

+ getCustomerDetails()
+ updateCustomer()

+ deleteCustomer()

/customers/{id}

GET - get customer details
PUT - update customer
POST - unused

DELETE - delete customer

/customers/{id}/orders

GET - get all orders for customer
PUT - unused

POST - add order

DELETE - cancel all customer orders

Mapping Examples

getFreeTimeSlots(Person)

— GET /people/{id}/timeslots!state=free

rejectApplication(Application)

—POST /rejections+
<application>http://...</application>+
<reason>Unsuitable for us!</reason>

performTariffCalculation(Data)

—POST /calculations
Data
+Location: http://.../calculations/471 |
— GET /calculations/471 |
+—Result

shipOrder(ID)

—PUT /orders/0815+
<status>shipped</status>

shipOrder(ID) [variation]

—POST /shipments+
Data
+Location: http://.../shipments/471 |

REST Anti-
Patterns

http://example.com/some-api?method=1nsert&name=Smith
http://example.com/some-api?method=deleteCustomer&id=13

http://example.com/some-api?method=findCustomer&id=13
http://example.com/customers/13

Accidentally RESTful

http://www.markbaker.ca/blog/2005/04/14/accidentally-restful/

(a.k.a. The SOAP Way)

POST@xample : com/Cus@

<soap:Envelope
xmlns:soap="http://schemqds.xmlsoap.org/soap/envelope/">
<soap :Body>
<ﬂ§1§}e€ustomer xmlns="Attp://example.com/ns1">
<custgmerI(customerld>
</ns:deleteCustpmer>
</soap :Body
</soap:Envelope>

Method ID Endpoint

“Endpoint”?

How do | get to the airport?

Take the A1, leave at exit 7, turn left, go on for 5 km.

How do | get to the airport?

Well, take the A1, leave at exit 7, turn left, go on for 5 km.

How do | get to the airport?

Take the A1, leave at exit 7, turn left, go on for 5 km! How many times do |
have to tell you?

ignoring
Caching

Client

GET /xyz

Client

Cached
Copy

Client

Cached
Copy

Representation

Server

—

200 OK

Vary: Accept-Encoding,User-Agent
Cache-Control: max-age=7200

Expires: Tue, 30 Sep 2008 19:30:56 GMT
ETag: 283728

GET /xyz
If-None-Match: "283728"

©

Server

304 Not Modified

Server

1 Yes

1. Did lhl);nl ation succeed?

2. Everything created as intended? Yes

_Response

Codes

Did you accept

100
101
200
201
202
203
204
205
2006
300
301
302
303
304
305
307
400
401
402
403

Continue

Switching Protocols
OK

Created

Accepted
Non-Authoritative
No Content

Reset Content
Partial Content
Multiple Choices
Moved Permanently
Found

See Other

Not Modified

Use Proxy
Temporary Redirect
Bad Request
Unauthorized
Payment Required
Forbidden

404
405
406
407
408
409
410
411
412
413
414
415
416
417
500
501
502
503
504
505

Not Found

Method Not Allowed

Not Acceptable

Proxy Authentication Required
Request Timeout

Conflict

Gone

Length Required

Precondition Failed

Request Entity Too Large
Request-URI Too Long
Unsupported Media Type
Requested Range Not Satisfiable
Expectation Failed

Internal Server Error

Not Implemented

Bad Gateway

Service Unavailable

Gateway Timeout

HTTP Version Not Supported

RESTful Cookie Recipe

Ingredients:

» 1 server-side secret

» user name/password validation on server (LDAP,
DB, ...)

Approach:

ask user for name and password if no cookie passed
authenticate user

create auth token as username + expiry date
hash(auth token + server secret)

return cookie as hash + auth_token

>
>
>
>
>
» server validates with algorithm on in-memory data

Hypermedia Levels

Representation

Server Server Server

apﬂhphtmvmlnﬂytype

Ignoring MIME Types

Breaking Self-
descriptiveness

Collection Resource

Context Related resources are accessed in groups

Solution Turn collection into resource,

Use links to point to contained
resources,

Include summary information for
contained resources

GET http://example.com/customers/

<?xml version="1.0" encoding="utf-8"7>
<customers xmlns="http://example.com/ns/crm">
<base-uri>http://example.com</base-uri>
<customer>
<name>Company A</title>
<link type="text/html" href="/customers/4711"/>

</customer>

Read-only View

Context

Solution

http://example.
http://example.
http://example.
http://example.
http://example.

Need for specialized views on one or
more collections or resources

Create additional read-only list
resources,
Link to underlying resources

com/customers/
com/customers/?region=3
com/customer-addresses/

com/changes/customers/?1imit=10
com/orders/2008/09/30/1200-1259

NOTICE

A\

Stop Worrying
About URI Design

http://example.com/orders/2008/09/30/1200-1259

http://example.com/AD273AFCCB78898ADEEFC(C22

Resource Creation

Context Resources are created concurrently and
need unique URIs

Solution POST contents to the collection that will
contain the resource
Receive 201 response code, (possibly
changed) representation and Location
header

Alternative Create UUID on client,
PUT content to {server URI}/{UUID}

Notification Polling

Context Clients need to know about updates to
resources
Solution Define View if needed,

Expose as RSS or Atom Feed,
Ensure correct cache control headers

Conflict Handling

Context Protect against concurrent modification
(lost update problem)

Solution Provide ETag and Last-Modified Headers,
Include preconditions,
Send correct 409/412 response codes for
unsafe methods

Named Link

Context Decouple client processing resource
connections

Solution Define link roles,
Build processing for roles,
Include links with role as attribute

<?xml version="1.0" encoding="utf-8"7>
<feed xmlns="http://www.w3.0rg/2005/Atom">
<title type="text">dive into mark</title>
<updated>2005-07-31T12:29:29Z</updated>
<id>tag:example.org,2003:3</1d>
<link rel="alternate" type="text/html" hreflang="en" href="http://example.org/"/>
<link rel="self" type="application/atom+xml" href="http://example.org/feed.atom"/>
<entry>
<title>Atom draft-07 snapshot</title>
<link rel="alternate" type="text/html" href="http://example.org/2005/04/02/atom"/>
<link rel="enclosure" type="audio/mpeg" length="1337" href="..."/>

Saved Search

Context Complex query input with mostly stable
result or “unsafe” query

Solution POST search criteria,
Receive result URI in Location header,
GET result (w/ cache control headers)

Conneg Extensions

Context Support linking to specific representation
formats, increase testability

Solution Provide generic resource with content
negotiation,

Provide distinct resources for one or
more representations mapped by
extension

GET http://example.com/customer/4711
GET http://example.com/customer/4711.xml
GET http://example.com/customer/4711.html

PUT/DELETE Tunneling

Context Firewalls or other tooling does not
support or blocks PUT and DELETE

Solution Use POST to tunnel PUT and DELETE,
Encode “true” verb in HTTP header or
hidden HTML form field

A WARNING

A

PUT AND DELETE
MIGHT BE BLOCKED
FOR GOOD REASON

Canonical Representation

Context Ensure lowest common denominator of

processing

Solution Provide default HTML presentation for

reading

Enable www-form-data for simple

processing
Provide HTML for queries

BaseResource

+ HTML get()
+ post(x-www-form-urlencoded)

T

Resource

Deep ETags

Context

Solution

Reduce computation load on server

Include ETag for resource presentations
returned from server,

Implement fast ETag checking w/o full
representation computation,

Return appropriate 304 response code

Externalized Server Cache

Context Simplify server caching implementation

Solution Get rid of server cache implementation,

Produce cache-control headers/ETags/
Last-Modified,

Implement Deep ETags,
Add caching intermediary

H
Client GET /xyz .\

Server
If-None-Match: 283728 Cache

- —>

< < L
304 Not Modified Representation
Cached Cached Resource
Copy Copy N—— v

Externalized Client Cache

Context Simplify client caching implementation

Solution Get rid of client cache implementation,
Add client caching intermediary

H
Client (h) GET /xyz Server
Cache I--None-Match: 283728
—P >

: ¢
‘ Representation 304 Not Modified
Cached

Transaction

Context Several resources have to be modified in
a single request
Solution Turn transaction into resource,

Modify transaction resource itself,
possibly in multiple steps

Finally PUT to transaction to commit all
changes

If You Want to Know
More

http://www.innog.com/resources/REST

Web Services for the Real World

L e
: {\~4 A -
RESTtul

Web Services

O’RElLLY. Leonard Richardson & Sam Ruby

http://www.oreilly.com/catalog/9780596529260/

© Al Content on nfoQab.._ [T

~ Tracking change and innovation in the enterprise software development Version 1.4
community

332,438 Aug unique

visitors Topic/Tag specific view

All content and news on InfoQ about REST

Latest featured content about REST
Welcome, Stefan! AtomServer — The Power of Publishing for Data Distribution — Part Two

Community SOA Topics REST, Open Source

Sign out

B In this article, Bryon Jacob and Chris Berry continue their description of AtomServer, their implementat
of a full-fledged Atom Store based on Apache Abdera. The authors have created several extensions t¢

About us AtomPub specification, among them Auto-Tagging, Batching, and Aggregate Feeds. By Chris Berry & Bry|

Personal feed £ Jacob on Sep 26, 2008,) Discuss

Home

Ty | =+ http://www.infoq.com/REST

Java JSR 3171 rinai: vava Ar1 Tor KES 1TUI Ve Services
Community Java, SOA Topics REST

.NET
gk b After a little more than one and a half years, the Java platform gets its own API for building RESTful w
iy RS, JSR 311. InfoQ had a chance to talk to spec leads Marc Hadley and Paul Sandoz. By Stefan Tilkov on Se
M SOA comments
[Agile
M Architecture WOA VS SQA me
Community SOA Topics REST
s In an interview, Loraine Lawson asked Gartner Vice President Nick Gall, who is credited with first desc

.EnterpriseWeb

Oc t28thENEVW YORK
Oct 30thFONDON N

[Uy S
Mashups SRE ST WO ¥

oriented architecture (WOA), to give business and IT leaders the bottom line about the WOA versus SO
Krishnan on Sep 22, 2008, " Discuss

« Search More news about REST >>

Articles about REST

Caaturard Tanirec

Thank you!
Any questions?

http://www.innoqg.com
http://railsconsulting.de

Stefan Tilkov

http://www.innog.com/blog/st/

INnnoQ

Architectural Consulting
SOA WS-* REST
MDA MDSD MDE
J(2)EE RoR NET

innoQ Deutschland GmbH innoQ Schweiz GmbH
Halskestrafie 17 Gewerbestrasse 11
D-40880 Ratingen CH-6330 Cham
Phone +49 2102 77 162-100 Phone +4141 74301

info i INNOQ.Com - WwWW. Innodg.com

1

REST # CRUD

Resource # Entity

Resource =~ Model

Resource =~ Controller

Application Layers

Presentation/UI

Data Formatting

Control Flow
Aggregate Logic

Business Rules
Relations

Data

(create, select, update, delete)

Browser

View

Controller

Model

Lib

Database

Utility Functions

Application Layers &

Resources
Presentation/UI Browser ‘ REST CIient\
Data Formatting View

Control Flow |

Aggregate Logic Controller
i—trb—bmctions

Business Rules
. Model
Relations |

Data Database

(create, select, update, delete)

Single Resource Model

Browser

(Other) REST Client

\ Aerything doable

Application

Resource H

Resource Resource

via Ul ...

... becomes
doable via API

Ul Backend = API

RESTful APIs

RESTful APls don’t expose low-level
details

Same layer — different abstraction
Value through uniformity and hypermedia

Mapping necessity: “Implement” HTTP
base interface

