
(c) IBM 2009. All rights reserved. • 1

Thorn: From Scripting to
Robust Concurrent

Components

IBM Research
Bard Bloom
John Field*

Nate Nystrom

Purdue
Brian Burg

Johan Östlund
Gregor Richards

Jan Vitek
Tobias Wrigstad

Cambridge
Rok Strniša

JAOO Oct. 2009

2

Distributed programming today:
an AJAX web app

ZIP code
City State

Submit

Zip Database

Zip Lookup
Servlet

Form Submission
Servlet

Merchant Credit
Server

User Credit
Servers

Form + JScript Code

ZIP code
City State

Credit Card Number
Submit

(c) IBM 2009. All rights reserved. • 2

3

<?php
/**
 * Connects to the database.
 * Return false if connection failed.
 */
function db_connect() {
 $database_name = 'mysql'; // Set this to your Database Name
 $database_username = 'root'; // Set this to your MySQL username
 $database_password = ''; // Set this to your MySQL password
 $result = mysql_pconnect('localhost',$database_username, $database_password);
 if (!$result) return false;
 if (!mysql_select_db($database_name)) return false;
 return $result;
}
$conn = db_connect(); // Connect to database
if ($conn) {
 $zipcode = $_GET['param']; // The parameter passed to us
 $query = "select * from zipcodes where zipcode = '$zipcode'";
 $result = mysql_query($query,$conn);
 $count = mysql_num_rows($result);
 if ($count > 0) {
 $city = mysql_result($result,0,'city');

 $state = mysql_result($result,0,'state');
 }
}
if (isset($city) && isset($state)) {
 // $return_value = $city . "," . $state;
 $return_value = '<?xml version="1.0" standalone="yes"?><zip><city>'.$city.'</city><state>'.$state.'</state></zip>';
}
else {
 $return_value = "invalid".",".$_GET['param']; // Include Zip for debugging purposes
}
header('Content-Type: text/xml');
echo $return_value; // This will become the value for the XMLHttpRequest object
?>6

AJAX code snippet

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/
xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" >
<head>
<title>ZIP Code to City and State using XmlHttpRequest</title>
<script language="javascript" type="text/javascript">
var url = "getCityState.php?param="; // The server-side script
function handleHttpResponse() {
 if (http.readyState == 4) {
 if (http.responseText.indexOf('invalid') == -1) {
 // Use the XML DOM to unpack the city and state data
 var xmlDocument = http.responseXML;
 var city = xmlDocument.getElementsByTagName('city').item(0).firstChild.data;
 var state = xmlDocument.getElementsByTagName('state').item(0).firstChild.data;
 document. ('city').value = city;
 document.getElementById('state').value = state;
 isWorking = false;
 }
 }
}
var isWorking = false;
function updateCityState() {
 if (!isWorking && http) {
 var zipValue = document.getElementById("zip").value;
 http.open("GET", url + escape(zipValue), true);
 http.onreadystatechange = handleHttpResponse;
 isWorking = true;
 http.send(null);
 }
}

function getHTTPObject() {
 var xmlhttp;
 /*@cc_on
 @if (@_jscript_version >= 5)
 try {
 xmlhttp = new ActiveXObject("Msxml2.XMLHTTP");
 } catch (e) {
 try {
 xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");
 } catch (E) {
 xmlhttp = false;
 }
 }
 @else
 xmlhttp = false;
 @end @*/
 if (!xmlhttp && typeof XMLHttpRequest != 'undefined') {
 try {
 xmlhttp = new XMLHttpRequest();

 xmlhttp.overrideMimeType("text/xml");
 } catch (e) {
 xmlhttp = false;
 }
 }
 return xmlhttp;
}
var http = getHTTPObject(); // We create the HTTP Object
</script>
</head>
<body>
<form action="post">
 <p>
 ZIP code:
 <input type="text" size="5" name="zip" id="zip" onblur="updateCityState();" />
 </p>
 City:
 <input type="text" name="city" id="city" />
 State:
 <input type="text" size="2" name="state" id="state" />
</form>
</body>
</html>

Table structure table `zipcodes`

CREATE TABLE `zipcodes` (
 `zipcode` mediumint(9) NOT NULL default '0',
 `city` tinytext NOT NULL,
 `state` char(2) NOT NULL default '',
 `areacode` smallint(6) NOT NULL default '0',
 PRIMARY KEY (`zipcode`),
 UNIQUE KEY `zipcode_2` (`zipcode`),
 KEY `zipcode` (`zipcode`)
) TYPE=MyISAM;

babble of
languages

same logical
data; many

different physical
representations

concurrency (UI
events, sever

interaction) buried
deep in APIs

no code
encapsulation,
no interfaces

A prettier picture: app composed
from encapsulated, distributed

components
FormController

InputWidget (city)

ButtonWidget (submit)

InputWidget (state)

InputWidget (zip)

ZipController

SessionController

ButtonWidget (next)

InputWidget (card)

DB

Acct (merchant)

Acct

Acct

Acct (user)

NB: concurrency is ubiquitous
•  UI events
•  client-server interaction
•  data parallelism
•  task parallelism 4

(c) IBM 2009. All rights reserved. • 3

 Thorn goals
An agile, high performance language for distributed
applications (including web apps), reactive systems,
and concurrent servers, with strong support for:

–  Concurrency: for application scalability, real-world event
handling

–  Distribution: distributed computing is ubiquitous, but existing
language support is poor

–  Code evolution: scripting languages are justifiably popular,
but don’t scale well to robust, maintainable systems

–  Security: need to build support for data/code confidentiality/
privacy into the language runtime, particularly in a distributed
environment

–  Fault-tolerance: provide features that help programmers
write robust code in the presence of hardware/software
faults

–  JVM implementation + Java interoperability: build on efficient
JVM platforms and Java libraries

5

Thorn is a scripting language

6

for (l <- argv()(0).file().contents().split("\n"))
 if (l.contains?(argv()(1))) println(l);

file i/o methods

no explicit decl needed for var

split string into string list

iterate over elements of a list

access command-line args

usual library functions on lists

(c) IBM 2009. All rights reserved. • 4

7

fun pang(name) = spawn {
 var other;
 async volley(n) {
 if (n == 0)
 println("$name misses");
 else {
 other <-- volley(n-1);
 println("round $n: $name hits the ball.");
 }
 }volley
 sync playWith(other') { other := other'; }
 body { while (true) serve; }
}spawn;

ping = pang("ping"); pong = pang("pong");
ping <-> playWith(pong); pong <-> playWith(ping);
ping <-- volley(10);

isolated, mutable component state

unidirectional communication

unidirectional msg send

bidirectional communication

bidirectional msg send (RPC)

create a new component (process)

component control loop

Thorn is a concurrent
language

Ping pong process structure

parent

pong

ping

spawn

playWith(pong)

playWith(ping)

spawn

volley(10)

volley(9)

volley(8)

8

(c) IBM 2009. All rights reserved. • 5

Scripting + Concurrency:
? …or… !

•  Scripts already handle concurrency (but not especially
well)

•  Dynamic typing allows code for distributed components to
evolve independently…code can bend without breaking

•  Rich collection of built-in datatypes allows components
with minimal advance knowledge of one another’s
information schemas to communicate readily

•  Powerful aggregate datatypes extremely handy for
managing component state

–  associative datatypes allow distinct components to
maintain differing “views” of same logical data

9

Thorn key features
–  Concurrency & distribution

–  applications organized as
collection of single-
threaded processes

–  Powerful core scripting
language

–  patterns, queries, tables,
–  Object system

–  class-based
–  multiple (but simple)

inheritance
–  promotes (but doesn't

require) immutability

–  Module system
–  packaging and name

scoping mechanism
–  no dynamic class loading

or complex class loading
semantics

–  Optional type annotations
–  to enable static checking
–  for code optimization

–  Java interoperability
–  Compiler organized as

collection of plugins
–  allows modular

implementation
–  allows extensibility

10

(c) IBM 2009. All rights reserved. • 6

Thorn design philosophy

•  Steal good ideas from everywhere
–  (ok, we invented some too)
–  aiming for harmonious merge of features
–  strongest influences: Erlang, Python (but there are

many others)
•  Adopt best ideas from scripting world

–  dynamically-typed core language
–  but no reflective or “self-modifying” features

•  Assume concurrency is ubiquitous
•  Seduce programmers to good software engineering

–  powerful constructs that provide immediate value
–  optional features for robustness

11

Project status
•  Interpreter for language design prototyping and

validation
•  JVM compiler for most of core language

–  no sophisticated optimizations
–  performance comparable to Python
–  compiler plugin support

•  Initial prototype of (optional) type annotation
system

•  Planned open source release for research
partners, early beta users soon

12

(c) IBM 2009. All rights reserved. • 7

Rest of the talk: a walk
through Thorn

•  Scripting core
–  patterns
–  tables and queries

•  Concurrency
•  Modules
•  Objects and classes
•  Cheeper: microTwitter in Thorn

•  Not covered today
–  compiler details, including

plugin mechanism
–  type system
–  many details

•  Disclaimers:
–  a research project, not an

IBM product
–  no time to explain how

Thorn feature F relates to
feature F’ in your favorite
language L

–  some features of language
subject to change as
experience base grows

13

Why scripts?

●  Purposes:
–  to quickly toss together useful little gadgets
–  e.g., count #occurrences of words in a

novel
–  quick prototyping
–  rapid, frequent changes

●  Light syntax
●  Weak data privacy
●  Dynamic typing
●  Powerful data structures

14

(c) IBM 2009. All rights reserved. • 8

The fate of scripts

•  Scripts don't stay small
–  little utility programs get more features
–  actually, I want a concordance, not just word

counts

•  And the features that made scripting easy
make robust programming hard
–  inefficient, hard to maintain
–  often, those little scripting programs grow up to be

monsters...
–  …e.g., Sweden’s pension system (written in Perl!)

15

Thorn: script ⟶ robust

●  Goal: Scripts can be gradually evolved into robust
programs

●  Dynamic types
–  but: you can provide static types

●  Lightweight syntax
–  but: light syntax isn't a problem for robustness

●  Weak data privacy by default
–  but: you can make things private; nice module

system
●  Powerful built-in aggregates

–  but: that's not a bad thing

16

(c) IBM 2009. All rights reserved. • 9

From scripts to programs via
patterns

●  Thorn, like most scripting languages, is untyped
●  Static types are good for robust programs

–  error catching, better compilation, etc.
●  Static types are actually simple static assertions

●  f is a number; l is a list
–  other kinds of static assertions also useful

●  f > 0; l has length 3

●  Entice programmers into wanting to supply such
assertions

–  make them useful for programming
–  not just verification and good practice

17

Thorn patterns

●  Patterns explain what a programmer expects

●  Compiler can also use this information for
optimization

fun f1(lst) {
 if (lst(0) == "addsq")
 return lst(1)*lst(1) + lst(2)*lst(2);
}

fun f2(["addsq", x, y]) = x*x + y*y;

fun f3(["addsq", x:int, y:int]) = x*x + y*y;

18

(c) IBM 2009. All rights reserved. • 10

Patterns are everywhere

●  fun f(pat1, pat2): function arguments

●  Exp ~ Pat: boolean test

●  pat = Exp: immutable binding

●  match(Exp) { Pat1 … Patn … }: match
stmt

●  receive stmt

fun squint(x:int) = x*x; # integer square

if (x ~ [1, y]) # match 2 elt. list with head=1

z = 1; # introduce new var z, bound to 1

[h,t...] = nonemptyList(); # exception if no match

19

Patterns in code

just a list literal

20

alist = [[1, true], [15, null], ["yes", "no"]];

fun lookup(k, [[$(k), v], _...]) = +v;

 | lookup(k, []) = null;

 | lookup(k, [_, t...]) = lookup(k, t);

if (lookup(15, alist) ~ +w) {

 assert(w == null) ;

 }

else assert(false) ;

if (lookup("no", alist) ~ +w) assert(false) ;

else assert(true) ;

match value of k
 bind 2nd to y

match arb. tail

idiom for “I found
it, and it’s y!”

idiom for “I
didn’t find it” bind tail to t

idiom for “did you
find something
(call it w)?”

(c) IBM 2009. All rights reserved. • 11

Other patterns
●  (BoolExp)? succeeds if BoolExp evals to true
●  P && Q matches things that match both P and Q.

●  Look for two elements in either order:

●  Test side condition in mid-match

●  P || Q matches if either P or Q does

●  !P matches if P doesn’t
–  no bindings at all

●  and a few more

fun f(L && [x,y...]) = g(L,x,y);

if (L ~ [_..., 1, _...] && [_..., 2, _...])

fun sqrt(n:float && (n>=0)?)

fun f(n:int || n:string) = 3 + n;

21

Tables and maps
●  Table: Thorn’s big mutable data structure

–  one or more keys
–  one or more non-keys
–  akin to maps and database tables

●  Word-counting script:

●  Tables are super-maps:
–  multiple keys, multiple values
–  maps available as syntactic sugar on tables

●  Program evolution:
–  avoid parallel maps; add new fields to a single table

t = table(word){var n;};

t.ins({: word:"provenance", n: 1 :});

t("provenance").n

t = table(word){var n, where;};

{: … :}
is a record

22

key field

other field(s)
var: mutable
val: immutable

(c) IBM 2009. All rights reserved. • 12

Queries
●  Special syntax for common cases of

searching and constructing
●  List comprehensions:

●  Quantifiers:

%[i*i | for i <- 2 .. 4] == [4,9,16]

%[i*i | for i <- 2 .. 4, if prime?(i)] == [4,9]

fun prime?(n) =
! %some(n mod k == 0 |
 for k <- 2 .. n, while k*k <= n);

23

Table queries

powers = %table(n=i){

 sq = i*i;

 cube = i*i*i;

 | for i <- 1 .. 10

 };

build a table with key n,
whose values are i…

…and non-keys for i2… and i3

varying i, as usual for queries

24

cubeRootOfEight = %find(

 n | for {: cube: 8, n:n :} <~ powers)

return the first result of query…

results of query

…iterating over rows
whose cube field is 8

pattern matching!

(c) IBM 2009. All rights reserved. • 13

25

Thorn concurrency model

•  All state encapsulated in a
component

•  Each component has a single
thread of control

•  Components communicate by
asynchronous message-passing

•  Messages passed by value
•  Messages managed via a simple

“mailbox” queue
•  No state shared among

components
•  Faults do not propagate across

components
•  Based on Actor model [Hewitt et

al.]
•  No locks

m2 m1

m3

component LifeWorker {

 var region;

 async workOn(r) {region := r;}

 sync boundary(direction, cells) {...}

 body {...} # code to run Conway’s life

}

regions = /* compute regions */;

for (r <- regions) {

 c = spawn(LifeWorker);

 c <-- workOn(r);

}

Components and concurrency

26

isolated lightweight process
(here, with a name)

initialize the component
using async message

create a component instance

sync communication replies

communication: “access point”
for peer; async does not reply

(mutable) component state

body code is run when
component is created

(c) IBM 2009. All rights reserved. • 14

comp <-> m(x) timeout(n) { dealWithIt(); }

spawn {

 var done := false;

 async quit() prio 100 { done := true; }

 sync do_something_real() { ... }

 body { while (!done) serve; }

}

Fine points

27

optional timeout block for
sync communications

a single communication is
processed each time the
body executes serve

optional communication priority

spawn {

 sync findIt(aKey) {

 logger <-- someoneSought(sender, aKey);

 # ... code to look it up ...

 return theAnswer;

 }

 body { while (true) serve; }

}

logger = spawn {

 var log := [];

 async someoneSought(who, what) {

 # do not answer; just cons onto log

 log ::= {: who, what :};

 }

 body { while (true) serve; }

}

Typical concurrency pattern

28

(c) IBM 2009. All rights reserved. • 15

Low-Level Communication

29

c <<< v;

receive {

 {: stop_right_now: _ :} prio 1 => { return; }

| {: please: “post”, data: x :} => { do_post(x); }

| {: please: “scan”, want: p :} => { do_scan(p); }

| timeout(10000) => { bored := true; }

}

highest priority messages
always matched first

optional (but usually
necessary) timeout block

asynchronously sends v
(any value) to c’s mailbox

Pure values and marshalling
•  In Thorn, only pure values may be passed as

messages
–  primitive values
–  records, lists of pure values
–  instances of pure classes

•  Pure classes:
–  all fields are val, initalized to pure values
–  all methods are pure

•  Pure methods/functions
–  no free references to global names
–  other free references only to pure values

•  Pure values passed as messages among
components in the same virtual machine can be
shared

•  Functional values are not actually marshalled;
sending and receiving components must load code
from the same module

30

(c) IBM 2009. All rights reserved. • 16

module M;

import N;

import own S = 0;

class A extends B {};

n = A();

private var x = N.A();

public S.C;

public N.A;

•  Designed for allowing existing scripts to
be repackaged as reusable code

Modules

this module is named M

A is M.A

B must come from M xor N xor S

own instance of O (renamed S)

shared instance of N

x is not exported from M

S.C not exported by default

Error: M.A already exported

Objects in Thorn

●  Class-based
–  less flexible (dangerous) than Lua, Self, JavaScript, …
–  more robustifiable

●  All access to data fields mediated by getter/setter
methods
●  only declaring class can access fields directly
●  as in Smalltalk

●  Parameterized classes allow pattern matching on
objects

●  Multiple inheritance
–  method ambiguities must be explicitly resolved
–  can use to model most interface examples in Java…
–  …or mixins

●  Various safety and convenience features

32

(c) IBM 2009. All rights reserved. • 17

Classes

33

class Named {

 val theName;

 def name() = theName;

 new Named(name'){

 theName = name';

 }

}Named

kim = Named("Kim");

val: read-only (the default)
var: read-write

simple ctor invocation (no ‘new’)

this can’t escape ctor (no
access to unitialized fields)

one-time binding to val field

denotes a constructor

Parameterized classes

34

class Point(x,y)

class NamedPoint(x,y,name)

 extends Point(x,y), Named(name)

np = NamedPoint(0,0,"Origin");

x and y are: (1) public val fields;
(2) params of implicit ctor; (3) more...

NamedPoint's x and y are
Point's x and y.

(c) IBM 2009. All rights reserved. • 18

Multiple inheritance

35

class Computer(sn) {

 def name() = "Comp$sn";

}

class NamedComputer(sn,name')

 extends Computer(sn), Named(name’) {

 def name() = super@Named.name();

}

ambiguous method references
must be explicitly disambiguated

Classes and patterns

●  Classes define extractor patterns:

 induces a pattern Named(p):

36

class Named(name){...}

if (person ~ Named(n)) { print("Name is $n"); }
if (person ~ Named("Kim")) { print("Hi, Kim."); }

(c) IBM 2009. All rights reserved. • 19

Accessing fields

37

class A {

 var b; # implied getter: def b() = b;

 # implied setter: def ‘b:=‘(b2){b:=b2;}

 var c; # implied getter: def c() = c;

 def ‘c:=‘(v) { if (v.prime?) c := v; }

 val d=1; # implied getter: def d() = d;

 var secret; 
def seret() { throw “Plase don’t”; }

 def ‘secret:=‘(x) { throw “Please don’t”; }

}

anA = A();

x = anA.d # implicitly invokes anA.d()

v only accessible inside A

Cheeper: microTwitter in
Thorn

38

(c) IBM 2009. All rights reserved. • 20

Influences
●  Concurrency

–  Erlang
●  Object-Oriented Programming

–  Scala, Java, C++, Kava
●  Pattern Matching / Destructuring

–  Lisp, ML, SNOBOL
●  Powerful Built-In Data Structures

–  ML, CLU
●  Scripting Style

–  Python, Perl, PHP, Ruby, Lua
●  Queries / Comprehensions

–  SETL, SQL

39

Experience

•  Compiler boostrapped in Thorn itself
•  Various medium-sized apps

– scripting “shootout” benchmarks
–  internet relay chat application

•  Larger apps in progress

40

(c) IBM 2009. All rights reserved. • 21

To do
Work in progress
•  failure recovery for

components
–  via persistent state

•  component-level security
–  information flow
–  access control

•  fancier types
•  new, optimizing compiler
•  open source release

Planned
•  web frameworks
•  cloud frameworks
•  parameterized modules
•  join-style patterns for

synchronization
•  database integration
•  system-level optimizations

–  (e.g., message traffic
minimization)

•  more advanced type
systems and static
checkers

•  Eclipse plugin
41

Wrapup

•  Concurrency is everywhere
•  Scripting + concurrency = power!
•  Patterns, modules, classes all work

together to help make scripts robust

42

(c) IBM 2009. All rights reserved. • 22

For more information…

•  http://www.thorn-lang.org
–  links to documentation
– online interpreter demo coming soon

•  Upcoming papers:
– OOPSLA ’09 (language design)
– POPL ’10 (optional type system, v1)

43

Thanks! Questions?

44

(c) IBM 2009. All rights reserved. • 23

Backup Material

45

Thorn application domains

Targeted

•  Networked software services
•  Reactive embedded

applications
•  Event-driven and task-

oriented server applications
•  Client and server code for

mobile apps
•  Client and server code for

web apps

Not targeted

•  Data parallel apps
•  Scientific apps
•  Extreme throughput
•  Embedded code with device-

level control

46

(c) IBM 2009. All rights reserved. • 24

Application development
landscape

•  Many devices
–  cell phones, GPS receivers,

PDAs
–  embedded systems

(automotive, aircraft, home
appliances)

–  sensors / actuators / webcams

•  Many servers/services in the
“cloud”

–  compute services
–  data services
–  network appliances

•  Systems software and
embedded software must work
together

–  server support for embedded
devices

–  embedded devices usually
networked (sensors, transport
sense/control)

•  Web programming and non-web
distributed programming more
and more alike

–  AJAX apps are lightweight
concurrent “servers”

–  RESTful style being adopted for
software services not
connected to a browser

47

How do we do we enable programmers to build and
compose agile software in such an environment?

Do we really need another
programming language?

•  Distribution, concurrency, and security are at best
afterthoughts in current mainstream languages
–  addressing these issues entirely through libraries is complex,

prone to obscure errors, and significantly inhibits high-level
optimization

•  Attempting to bolt significant new features on existing
languages is likely to yield diminishing returns
–  concurrency constructs interact with other languages features in

surprisingly subtle ways

•  Scripting languages are a fertile area for innovation;
programmers are willing to experiment with new
approaches

48

(c) IBM 2009. All rights reserved. • 25

Fancier queries

49

words = novel.split("[^A-Za-z']+");

counts = %group(word = w.toLower()){

 n = %count;

 them = %list w;

 | for w <- words

 };

sorted = %sort(r %> n %< word |

 for r && {: n, word :} <- counts);

for (r <- sorted) {

 println(r);

}

list all the words
in the novel group them by

lower case
word

count number
of occurrences

list them all (in
original case)

ascending by
word per number

descending
number

sort the groups

also bind the n and
word fields

bind each
row to r

Tables and queries: more

50

bio = table(name,day){map var weight; val bp; val hair; };

bio("kim",1) := {: bp: 120, hair: "black", weight: 120 :};

bio["kim", 1] := 130;

assert(bio["kim", 1] == 130) ;

assert(bio("kim", 1).hair == "black") ;

bio.ins({: name:"kim", day: 4, hair: "black", weight: 132, bp: 125 :});

bio.ins({: name:"kim", day: 8, hair: "blue", weight: 135, bp: 110 :});

d = %find(day | for {: name: "kim", day, hair:"blue" :} <~ bio);

assert(d == 8) ;

bio("kim", d) := null;

assert(

 %every(hair == "black" | for {: name:"kim", hair :} <~ bio)

);

multi-part key

distinguished
field for map
ops. insert a row

insert a row via map

non-map access map access

query: when was Kim’s hair blue?

quantifier: now, hair
always black

delete that row

(c) IBM 2009. All rights reserved. • 26

Patterns and bindings

fun sum([]) = 0;

 | sum([x,y...]) = x + sum(y);

fun sum'(lst) {

 if (lst ~ [x,y...])

x + sum(y);

 else {0;}

 }

match empty list

match list with
head x and tail y

does it match? if so,
bind x,y in then clause

51

Pattern variable scope
●  Match bindings available in guarded code:

•  until guards code after loop:

var L := [1,2,3]; var s := 0;

 while (L ~ [x,y...]) {

 L := y; s += x;

 }

p = Person();

do {

 p.seekSpouse();

} until (p.spouse ~ +q);

liveHappily(p,q);

use x,y

g out of scope

match non-null, bind to g

g in scope

x,y out of scope

52

(c) IBM 2009. All rights reserved. • 27

Thorn's yes/no idiom
•  Expression +e is a non-null encoding of e

•  Pattern +x undoes + and binds result to x

–  fails on null
•  Java (and many other languages) express this chaotically:

–  variously return null, or -1, or throw exception. …
–  sometimes two related functions are used, e.g.

Map.containsKey(k), Map.get(k)

•  ML’s Some(e) and None are pleasant

–  but can require extra boxing
•  In Thorn, +x == x for most x’s

–  extra benefit: quick to compute
•  +null != null

–  +null is an otherwise boring value
•  Nullities: +null, ++null, +++null, etc.

–  this (relatively rare) case requires boxing
53

Journaler: mini-blog

54

journaler = spawn{

 journals = table(user, number) {var entry, comments;};

 sync newUser(name) {

 if (%some(true |

 for {: user:$(name) :} <~ journals)) {

 return false; # name taken

 }

 else {

 journals(name, 0) := {: entry: "Started", comments: [] :};

 }

 }newUser

 sync getEntry(user, number) {

 if (journals(user,number) ~ +{:entry, comments:}) return +entry;

 else return null;

 }

 body { while(true) serve; }

}spawn;

(c) IBM 2009. All rights reserved. • 28

Talking to Journaler

55

var i := 0;

var username;

do {

 i += 1;

 username := "bard"+i;

} until (journaler <-> newUser(username));

if ((journaler<->getEntry(username, 0)) ~ +entry) {

 # yay, I've got an entry.

}

