(c) IBM 2009.

Thorn: From Scripting to
Robust Concurrent
Components

IBM Research Purdue Cambridge
Bard Bloom Brian Burg Rok Strnisa
John Field* Johan Ostlund

Nate Nystrom Gregor Richards

Jan Vitek
Tobias Wrigstad

JAOO Oct. 2009

Distributed programming today: ,
an AJAX web app 7‘

] -

Zip Database

E I
City Zip Lookup
ZIP code Servlet Merchant Credit

Server

Credit Card Number I:l

Form + JScript Code

Form Submission
Servlet

User Credit
Servers

All rights reserved.

(c) IBM 2009.

AJAX code snippet A

babble of same logical
languages ‘ ey —— _data; many

3§ . different physical
presentations

LAt tpRequ
mlhttp

tp = getHTTRObject(); // W *he HITP Object
&>

P

no code . concurrency (Ul
encapsulation, : events, sever
no interfaces interaction) buried
deep in APIs

A prettier picture: app composed
from encapsulated, distributed
components

onController
(merchant)

NB: concurrency is ubiquitous
* Ul events
2=t eumit) + client-server interaction
» data parallelism
+ task parallelism

All rights reserved.

Thorn goals VA

An agile, high performance language for distributed
applications (including web apps), reactive systems,
and concurrent servers, with strong support for:

Concurrency: for application scalability, real-world event
handling

Distribution: distributed computing is ubiquitous, but existing
language support is poor

Code evolution: scripting languages are justifiably popular,
but don’t scale well to robust, maintainable systems

Security: need to build support for data/code cpnfide_ntialit¥/
privacy into tthe language runtime, particularly in a distributed
environmen

Fault-tolerance: provide features that help programmers
¥vr|tlte robust code in the presence of hardware/software
aults

JVM implementation + Java interoperability: build on efficient
JVM platforms and Java libraries

5

Thorn is a scripting language VA

access command-line args

file i/o methods

split string into string list

for (1 <- argv() (0).file() .contents () .split("\n"))
if (l.contains?(argv () (1))) println(l);

iterate over elements of a list
no explicit decl needed for var

usual library functions on lists
6

(c) IBM 2009. All rights reserved.

Thorn is a concurrent m
Ia n g u ag e create a new component (r;r(;cess)

fun pang(name) = spawn {
var other; isolated, mutable component state
async volley (n) {
if (n == 0) unidirectional communication
println ("$name misses") ;
alse unidirectional msg send
cithe rN<== v o luliaA(nZine;
println ("round $n: $name hits the ball.");
} bidirectional communication

}volley
sync playWith (other') { other := other'; }
body { while (true) serve: } bidirectional msg send (RPC)

} spawn;
component control loop

ping = pang("ping"); pong = pang ("pong") ;
ping <-> playWith (pong); pong <-> playWith (ping) ;
ping <-- volley (10);

Ping pong process structure VA

spawn

volley(10)

9

Q\a\!
parent spawn
Pl

n

/7(0/,,
. -

volley(8)

volley(9)

(c) IBM 2009. All rights reserved.

Scripting + Concurrency: |
?..0r..! 7‘

Scripts already handle concurrency (but not especially
well)

Dynamic typing allows code for distributed components to
evolve independently...code can bend without breaking

Rich collection of built-in datatypes allows components
with minimal advance knowledge of one another’s
information schemas to communicate readily

Powerful aggregate datatypes extremely handy for
managing component state

— associative datatypes allow distinct components to
maintain differing “views” of same logical data

Thorn key features 7‘

- Concurrency & distribution - Module system

- applications organized as - packaging and name
collection of single- scoping mechanism

threaded processes - no dynamic class loading
- Powerful core scripting or complex class loading
language semantics

- patterns, queries, tables, - Optional type annotations
- Object system - to enable static checking
class-based - for code optimization
multiple (but simple) - Java interoperability

inheritance ' - Compiler organized as
promotes (but doesn't collection of plugins
require) immutability _ allows modular

implementation
- allows extensibility

(c) IBM 2009. All rights reserved.

(c) IBM 2009.

Thorn design philosophy 7‘

Steal good ideas from everywhere
— (ok, we invented some too)
— aiming for harmonious merge of features

— strongest influences: Erlang, Python (but there are
many others)

Adopt best ideas from scripting world

— dynamically-typed core language

— but no reflective or “self-modifying” features
Assume concurrency is ubiquitous

Seduce programmers to good software engineering
— powerful constructs that provide immediate value
— optional features for robustness

Project status 7‘

Interpreter for language design prototyping and
validation

JVM compiler for most of core language

— no sophisticated optimizations

— performance comparable to Python

— compiler plugin support

Initial prototype of (optional) type annotation
system

Planned open source release for research
partners, early beta users soon

All rights reserved.

Rest of the talk: a walk ,
through Thorn 7‘

Scripting core

— patterns

— tables and queries
Concurrency

Modules

Not covered today

— compiler details, including
plugin mechanism

— type system
— many details

Disclaimers:

Objects and classes
Cheeper: microTwitter in Thorn

— aresearch project, not an
IBM product

— no time to explain how
Thorn feature F relates to
feature F’ in your favorite
language L

some features of language
subject to change as
experience base grows

Why scripts? 7‘

Purposes:
- to quickly toss together

~ e.g., count #occurrences of words in a
novel

- quick prototyping

- rapid, frequent changes
Light syntax

Weak data privacy
Dynamic typing

Powerful data structures

(c) IBM 2009. All rights reserved.

useful little gadgets

The fate of scripts 7‘

» Scripts don't stay small
— little utility programs get more features
— actually, | want a concordance, not just word
counts

« And the features that made scripting easy
make robust programming hard
— inefficient, hard to maintain

— often, those little scripting programs grow up to be
monsters...

— ...e.g., Sweden’s pension system (written in Perl!)

Thorn: script — robust 7‘

. Goal: Scripts can be gradually evolved into robust
programs
. Dynamic types
- but: you can provide static types
. Lightweight syntax
- but: light syntax isn't a problem for robustness
. Weak data privacy by default

- but: you can make things private; nice module
system

. Powerful built-in aggregates
- but: that's not a bad thing

(c) IBM 2009. All rights reserved.

From scripts to programs via

patterns VA

Thorn, like most scripting languages, is untyped
Static types are good for robust programs
_ error catching, better compilation, etc.

Static types are actually simple static assertions
. fis a number; | is a list

- other kinds of static assertions also useful
. £>0; | has length 3

Entice programmers into wanting to supply such

assertions

- make them useful for programming

- not just verification and good practice

Thorn patterns VA

. Patterns explain what a programmer expects

fun f1(lst) {

if (1st(0) == "addsqg")

return 1st (1)*1st(l) + 1lst(2)*1st(2);
}

fun f2 (["addsq", x, y]) = xX*x + y*y;

fun f3(["addsg", x:int, y:int]) = x*x + y*y;

. Compiler can also use this information for
optimization

(c) IBM 2009. All rights reserved.

(c) IBM 2009.

Patterns are everywhere VA

fun f(patl, pat2):function arguments
fun squint(x:int) = x*x; # integer square

Exp ~ Pat: boolean test
if (x ~ [1, y]) # match 2 elt. list with head=1

pat = Exp:immutable binding

;s # introduce new var z, bound to 1
.] = nonemptyList(); # exception if no match

match(Exp) { Patl .. Patn .. }:match
stmt

receive stmt

Patterns in code VA

match value of k bind 2™ to y idiom for “l found
it, and it's y!”

alist = [[1, true], [15, null], ["yes", "no"] 1;

fun lookup(k, [[$(k), V], _...1) = +v;
| lookup(k, []) = null;
| lookup(k, [_, t...]) = lookup(k, t);

match arb. tail

idiom for “I
bind tail to t didn’t find it”
if (lookup(1l5, alist) ~ +w) {

EEEEERE =GN g idiom for “did you
} find something
else assert(false) ; (call it w)?”

if (lookup("no", alist) ~ +w) assert(false) ;
else assert(true) ;

All rights reserved.

(c) IBM 2009.

Other patterns VA

(BoolExp)? succeeds if BoolExp evals to true
P && Q matches things that match both P and Q.
fun £(L && [x,y...]) = g(L,x,Y);
Look for two elements in either order:
if (L~ [_eeey 1, ouo] &8 [_ove, 2,
Test side condition in mid-match

... 1)

fun sqgrt(n:float && (n>=0)?)
P || Q matches if either P or Q does
fun f(n:int || n:string) = 3 + n;
IP matches if P doesn’t
- no bindings at all
and a few more

Tables and maps VA

Table: Thorn’s big mutable data structure
- one or more keys key field
- one or more non-keys
- akin to maps and database takles

Word-counting script:

other field(s)
var: mutable
t = table(word){var n;}; val: immutable
t.ins({: word:"provenance", n: 1 :});
t("provenance").n
{: . :}
Tables are super-maps: is a record
- multiple keys, multiple values
- maps available as syntactic sugar on tables
Program evolution:
- avoid parallel maps; add new fields to a single table

t = table(word){var n, where;};

All rights reserved.

Queries

. Special syntax for common cases of
searching and constructing

. List comprehensions:

%[i*i | for i <- 2 .. 4] == [4,9,16]
%[i*i | for i <- 2 .. 4, if prime?(i)] == [4,9]

. Quantifiers:

fun prime? (n) =
! $some (n mod k == 0 |
for k <- 2 .. n, while k*k <= n);

Table queries VA

build a table with key n,
whose values are i...

powers = %table(n=1){ ...and non-keys for i2... and i3
sg = 1%*1;

cube = i*i*i; T g
: ! varying i, as usual for queries
| for i <- 1 ..
}i
return the first result of query...

...iterating over rows
whose cube field is 8

cubeRootOfEight = %$find(
n | for {: cube: 8, n:n :} <~ powers)

pattern matching!

results of query

(c) IBM 2009. All rights reserved.

Thorn concurrency model

All state encapsulated in a
component

Each component has a single
thread of control

Components communicate by
asynchronous message-passing

Messages passed by value

Messages managed via a simple
“mailbox” queue

No state shared among
components

Faults do not propagate across
components

Based on Actor model [Hewitt et
al.]

No locks

Components and concurrency A

isolated lightweight process
(here, with a name)

component LifeWorker {
var region;
async workOn(r) {region := r;}
sync boundary(direction, cells)

(mutable) component state

communication: “access point”
for peer; async does not reply

body {...} # code to run Conway’s life

}

regions = /* compute regions */;
for (r <- regions) {

c = spawn{LifcWorker):

c <-- workOn(r);

(c) IBM 2009. All rights reserved.

sync communication replies

body code is run when
component is created

create a component instance

initialize the component
using async message

(c) IBM 2009.

Fine points A

optional timeout block for
sync communications

comp <-> m(x) timeout(n) { dealWithIt(); }

spawn { optional communication priority
var done := false;
async quit() prio 100 { done := true; }
sync do_something real() { ... }
body { while (!done) serve; }

a single communication is
processed each time the
body executes serve

Typical concurrency pattern FZ

spawn {
sync findIt(aKey) {

logger <-- someoneSought (sender, aKey);
... code to look it up ...
return theAnswer;

}

body { while (true) serve; }

logger = spawn {
var log := [];
async someoneSought(who, what) {
do not answer; just cons onto log
log ::= {: who, what :};
}

body { while (true) serve; }

All rights reserved.

Low-Level Communication A

asynchronously sends v
(any value) to c¢’s mailbox

highest priority messages

c <<< v;
always matched first

receive {
{: stop right now: _ :} prio 1 => { return; }
: please: “post”, data: x :} => { do _post(x); }
: please: “scan”, want: p :} => { do_scan(p); }
imeout (10000) => { bored := true; }

optional (but usually
necessary) timeout block

29

Pure values and marshalling

In Thorn, only pure values may be passed as
messages

— primitive values

— records, lists of pure values

— instances of pure classes

Pure classes:

— all fields are val, initalized to pure values

— all methods are pure

Pure methods/functions

— no free references to global names

— other free references only to pure values

Pure values passed as messages among
components in the same virtual machine can be
shared

Functional values are not actually marshalled;
sending and receivinP components must load code
from the same module

(c) IBM 2009. All rights reserved.

Modules VA

» Designed for allowing existing scripts to
be repackaged as reusable code

this module is named M

module M; :

shared instance of N
import N; own instance of 0 (renamed S)
import own S = 0;

B must come from M xor N xor S
class A extends B {};

n = A(); AiSM.A
private var x = N.A(): -
x is not exported from M

public S.C;
public N.A; S.C not exported by default

Error: M. A already exported

Obijects in Thorn VA

Class-based
_ less flexible (dangerous) than Lua, Self, JavaScript, ...
- more robustifiable

All access to data fields mediated by getter/setter
methods

. only declaring class can access fields directly

. as in Smalltalk

Parameterized classes allow pattern matching on
objects

Multiple inheritance

- method ambiguities must be explicitly resolved

~ can use to model most interface examples in Java...
~ ...0r mixins

Various safety and convenience features

(c) IBM 2009. All rights reserved.

Classes A

val: read-only (the default)
var: read-write
class Named {
val theName;
def name() = theiame; denotes a constructor

new Named (name') {
theName = name'; one-time binding to val field

}
}Named
this can’t escape ctor (no

kim = Named("Kim"); access to unitialized fields)

simple ctor invocation (no ‘new’)

Parameterized classes A

x andy are: (1) public val fields;
class Point(x,y) (2) params of implicit ctor; (3) more...

class NamedPoint(x,y,name)
extends Point(x,y), Named(name)

np = NamedPoint(0,0,"Origin");
NamedPoint's x andy are
Point's x and y.

(c) IBM 2009. All rights reserved.

Multiple inheritance

class Computer(sn) {
def name() = "Comp$sn";

}

class NamedComputer (sn,name')
extends Computer(sn), Named(name’) {
def name() = super@Named.name();

ambiguous method references
must be explicitly disambiguated

Classes and patterns

. Classes define extractor patterns:
class Named (name) {...}

induces a pattern Named (p):

if (person ~ Named(n)) { print ("Name is $n"); }
if (person ~ Named("Kim")) { print("Hi, Kim."); }

(c) IBM 2009. All rights reserved.

Accessing fields VA
A {

b; # implied getter: def b() = b;
implied setter: def ‘b:=‘(b2){b:=b2;}

@g # implied getter: def c() = c;
‘c:='(v) { if (v.prime?) c := v; }

d=1; # implied getter: def d{) = d;

v only accessible inside A
secret;

seret() { throw “Plase don’t”; }
‘secret:=’'(x) { throw “Please don’'t”; }

}

anA = A();
X = anA.d # implicitly invokes anA.d()

Cheeper: microTwitter in .
Thorn VA

(c) IBM 2009. All rights reserved.

Influences 7‘

. Concurrency
- Erlang

. Object-Oriented Programming
- Scala, Java, C++, Kava

. Pattern Matching / Destructuring
- Lisp, ML, SNOBOL

. Powerful Built-In Data Structures
- ML, CLU

. Scripting Style
- Python, Perl, PHP, Ruby, Lua

. Queries / Comprehensions
- SETL, SQL

Experience 7‘

» Compiler boostrapped in Thorn itself

» Various medium-sized apps
— scripting “shootout” benchmarks
— internet relay chat application

» Larger apps in progress

(c) IBM 2009. All rights reserved.

To do 7‘

Work in progress Planned
« failure recovery for » web frameworks

components

— via persistent state
component-level security
— information flow

— access control
fancier types

new, optimizing compiler
open source release

Wrapup

cloud frameworks
parameterized modules

join-style patterns for
synchronization

database integration

system-level optimizations

— (e.g., message traffic
minimization)

more advanced type

systems and static
checkers

Eclipse plugin

7

Concurrency is everywhere
Scripting + concurrency = power!

Patterns, modules, classes all work
together to help make scripts robust

(c) IBM 2009. All rights reserved.

(c) IBM 2009.

For more information...

* http://www.thorn-lang.org

— links to documentation

— online interpreter demo coming soon
« Upcoming papers:

— OOPSLA '09 (language design)

— POPL 10 (optional type system, v1)

Thanks! Questions?

All rights reserved.

7

7

22

Backup Material 7‘

Thorn application domains 7‘

Targeted Not targeted

Networked software services Data parallel apps
Reactive embedded Scientific apps
applications Extreme throughput

Event-driven and task- Embedded code with device-
oriented server applications level control

Client and server code for
mobile apps

Client and server code for
web apps

(c) IBM 2009. All rights reserved.

Application development |
landscape 7‘

Many devices + Systems software and
cell phones, GPS receivers, embedded software must work
PDAs together
embedded systems — server support for embedded
(automotive, aircraft, home devices
appliances) — embedded devices usually
sensors / actuators / webcams networked (sensors, transport

sense/control)

Many servers/services in the .

“cloud” Web programming and non-web
— compute services distributed programming more
e and more alike
- ; — AJAX apps are lightweight

network appliances N i n e e
— RESTful style being adopted for
software séervices not
connected to a browser

How do we do we enable programmers to build and
compose agile software in such an environment?

Do we really need another ,
programming language? 7‘

Distribution, concurrency, and security are at best
afterthoughts in current mainstream languages

— addressing these issues entirely through libraries is complex,
prone to obscure errors, and significantly inhibits high-level
optimization

Attempting to bolt significant new features on existing

languages is likely to yield diminishing returns

— concurrency constructs interact with other languages features in
surprisingly subtle ways

Scripting languages are a fertile area for innovation;
programmers are willing to experiment with new
approaches

(c) IBM 2009. All rights reserved.

Fancier queries

list all the words A

in the novel
group them by
lower case

words = novel.split("["A-Za-z']+"):
word

counts $group (word = w.toLower()){ count number
n = Scount; of occurrences
E = G list them all (in
| for w <- words original case)
bi
sort the groups descending ascending by
number word per number

sorted = %sort(r %> n %< word |
for r && {: n, word :} <- counts);

bind each also bind the n and

row to d fields
for (r <- sorted) { ~ NS

println(r);

}

Tables and queries: more

multi-part key A/

bio = table(name,day){map var weight; val bp; val hair; };

bio("kim",1) := {: bp: 120, hair: "black", weight: 120 :}; distinguished
- field for map
bio["kim", 1] := 130; insert a row ops.

assert (bio["kim", 1] == 130) ; insert a row via map
assert (bio("kim", 1).kair == "black”) ; Map access non-map access

bio.ins({: name:"kim", day: 4, hair: "black", weight: 132, bp: 125 :});
bio.ins({: name:"kim", day: 8, hair: "blue", weight: 135, bp: 110 :});

d = %3find(day | for {: name: "kim", day, hair:"blue" :} <~ bio);
assert(d == 8) ; o y

‘ J query: when was Kim'’s hair blue?
bio("kim", d) = -
delete that row quantifier: now, hair

assert(always black

gevery(hair == "black" | for {: name:"kim", hair :} <~ bio)

)i

(c) IBM 2009. All rights reserved.

Patterns and bindings VA

h l
fun sum([]) = 0; match empty list

| sum([x,y...]) = x + sum(y);
match list with
head x and tail y

fun sum' (1lst) {
if (1lst ~ [x,¥...
X + sum(y);
else {0;}
}

1) does it match? if so,
bind X,y in then clause

Pattern variable scope VA

. Match bindings available in guarded code:

var L := [1,2,3]; var s := 0;
while (L ~ [X,Y...]1) {
L :=y; s += X;

}

use x,y
x,y out of scope
. until guards code after loop:

p = Person(); match non-null, bind to g
do {
p.seekSpouse();
f
} until (p.spouse ~ +q); CICRIEIEED

liveHappily(p,q); :
g In scope

(c) IBM 2009. All rights reserved.

Thorn's yes/no idiom FZ

Expression +e is a non-null encoding of e
Pattern +x undoes + and binds result to x
— fails on null
Java (and many other languages) express this chaotically:
— variously return null, or -1, or throw exception. ...
— sometimes two related functions are used, e.g.
Map.containsKey(k), Map.get(k)
ML’s Some (e) and None are pleasant
— but can require extra boxing
In Thorn, +x == x for most x’s
— extra benefit: quick to compute
+null != null
— +null is an otherwise boring value
Nullities: +null, ++null, +++null, etc.
— this (relatively rare) case requires boxing

Journaler: mini-blog FZ

journaler = spawn{
journals = table(user, number) {var entry, comments;};
sync newUser (name) {
if (%some(true |
for {: user:$(name) :} <~ journals)) {
return false; # name taken
}
else {
journals(name, 0) := {: entry: "Started", comments: [] :};
}

}newUser

sync getEntry(user, number) {
if (journals(user,number) ~ +{:entry, comments:}) return +entry;
else return null;

}

body { while(true) serve; }
}spawn;

(c) IBM 2009. All rights reserved.

Talking to Journaler FZ

var i := 0;
var username;
do {

i+=1;

username := "bard"+i;

} until (journaler <-> newUser(username));

if ((journaler<->getEntry(username,
yay, I've got an entry.
}

(c) IBM 2009. All rights reserved.

0)) ~ +entry) {

