
Defective Java Code:
Mistakes That Matter

William Pugh
Univ. of Maryland

DEFECTIVE JAVA CODE:
MISTAKES THAT MATTER

William Pugh
Univ. of Maryland

0.5

• Use to get excited by being able to automatically find
bugs in code

• Too easy, not rewarding enough

• Now, focused on helping people find and fix mistakes
that matter

Code has bugs

• no perfect correctness or security

• you shouldn’t try to fix everything that is wrong with
your code

• engineering effort is limited and zero sum

Defective Java Code
Learning from mistakes

• I’m the lead on FindBugs

• static analysis tool for defect detection

• Spent a lot of time at Google

• Found thousands of errors

• not style issues, honest to god coding mistakes

• but mistakes found weren’t causing problems in
production

• 4,000 issues to review

• Bug patterns most relevant to
Google

• 8,000 reviews

• 75+% must/should fix

• many issues independently
reviewed by multiple engineers

> 1,800 bugs filed
> more than 600 fixed

> More than 1,500 issues
removed in several days

FindBugs fixit @ Google
May 2009

FindBugs demo

Learned wisdom

• Static analysis typically finds mistakes

• but some mistakes don’t matter

• need to find the intersection of stupid and important

• The bug that matter depend on context

• Static analysis, at best, might catch 5-10% of your software quality
problems

• 80+% for certain specific defects

• but overall, not a magic bullet

• Used effectively, static analysis is cheaper than other techniques for
catching the same bugs

Audience interaction time

•Which code is better?

a) if (x.equals("name")) { ... }

b) if ("name".equals(x)) { ... }

Discussion

• "name".equals(x) handles x being null by
computing false

• x.equals("name") throws NPE if x is null

• Do I anticipate that x might be null?

• If I don't anticipate that x might be null, and it is,
what would I prefer?

• a silent behavior I didn't anticipate

• a runtime exception

When you write code,
it has errors

• Untested code likely isn't correct

• unit tests / regression tests / system tests

• Your code probably doesn't correctly handle situations
you didn't anticipate

• But perfect can only be approached asymptotically

• If you can't prevent an error, can you detect it and log
it?

• if you detect it, is it OK to fail safe?

Runtime exceptions can be
your friend

• Pretty common to wrap operations in a try/catch
block

• web transactions, processing a GUI event, etc.

• Most systems will degrade gracefully when they hit
runtime exceptions

• the action that threw the exception fails, but the
system keeps going

• If something unanticipated happens, I want to know it

Testing equality to a string
constant, revisited

•What if I know x might be null? Which do I prefer?

a) x != null && x.equals("foo")

b) "foo".equals(x)

(a) clearly documents that x might be null,

(b) might just have been chosen because developer read
it in a style guide, although developer doesn't anticipate
x will ever be null

Understand your risk/bug
environment

•What are the expensive risks?

• Is it OK to just pop up an error message for one web
request or GUI event?

• how do you ensure you don't show the fail whale to
everyone?

• Could a failure destroy equipment, leak or loose
sensitive/valuable data, kill people?

mistakes charactertistics

•Will you know quickly if it manifests itself?

•What techniques are good for finding it?

• Is unit testing effective?

• Might a change in circumstances cause it to start
manifesting itself?

•What is the cost of it manifesting itself?

• If is does manifest itself, will it come on slowly or in a
tidal wave

Bugs in Google's code

• Google's code base contains thousands of "serious" errors

• code that could never function in the way the developer
intended

• If noticed during code review, would definitely have been fixed

• Most of the issues found by looking at Google's entire codebase
have been there for months or years

• despite efforts, unable to find any causing noticeable problems in
production

As issues/bugs age

• go up:

• cost of understanding potential issues, deciding if they
are bugs

• cost and risk of changing code to remedy bugs

• goes down:

• chance that bug will manifest itself as misbehavior

More efficient to look at
issues early

• be prepared for disappointment when you look at old
issues

• may not find many serious issues

• don't be too eager to "fix" all the old issues

Where bugs live

• code that is never tested

• If code isn't unit or system tested, it probably doesn't work

• throw new UnsupportedOperationException() is
vastly underrated

• if your current functionality doesn't need an equals
method, and you don't want to write unit tests for it, make
it throw UnsupportedOperationException

• Particularly an issue when you implement an interface with
12 methods, and your current use case only needs 2

Java Bug Bestiary

Null bug

• From Eclipse, 3.5RC3:
org.eclipse.update.internal.ui.views.FeatureStateAction

 if (adapters == null && adapters.length == 0)
 return;

• Clearly a mistake

• First seen in Eclipse 3.2

• but in practice, adapters is probably never null

• Is there any impact from this?

• we would probably notice a null pointer exception

• we don’t immediately return if length is 0

Cost when a mistake causes
a fault/failure

• How quickly/reliability would you notice?

•What is the impact of the misbehavior caused by the
mistake?

• How easily could you diagnose the problem and the fix?

•What is the cost to deliver a fix?

Null pointer bugs
@ Google

• Google's code contains more than a thousand null
pointer bugs

• statements or branches that if executed guarantee a
null pointer exception

• From looking at exceptions logged in production, can
tell you that few if any of the NPE that occur in
production are caused by those kinds of mistakes

• typically, caused because message doesn't have an
expected component

Mistakes in web services

• Some mistakes would manifest themselves by throwing
a runtime exception

• Should be logged and noticed

• If it isn’t happening now, a change might cause it to
start happening in the future

• But if it does, the exception will likely pinpoint the
mistake

• And pushing a fix into production is cheaper than
pushing a fix to desktop or mobile applications

Expensive mistakes (your
results may vary)

• Mistakes that might cost millions of dollars on the first
day they manifest

• Mistakes that silently cause the wrong answer to be
computed

• might be going wrong now, millions of times a day

• or might be OK now, but when it does go wrong, it
won’t be noticed until somewhere downstream of
mistake

• Mistakes that are expensive or impossible to fix

Using reference equality
rather than .equals

from Google’s code (no one is perfect)

class MutableDouble {

 private double value_;

 public boolean equals(final Object o) {
 return o instanceof MutableDouble &&
 ((MutableDouble)o).doubleValue()
 == doubleValue();
 }

 public Double doubleValue() {
 return value_;
 }

Using == to compare
objects rather than .equals
• For boxed primitives, == and != are computed using

pointer equality, but <, <=, >, >= are computed by
comparing unboxed primitive values

• Sometimes, equal boxed values are represented using
the same object

• but only sometimes

• This can bite you on other classes (e.g., String)

• but boxed primitives is where people get bit

Heisenbugs vs. deterministic
bugs

• A Heisenbug is a mistake that only sometimes
manifests itself (e.g., a data race)

• Testing not likely to show error

• if a test fails, rerunning the test may succeed

• Can be very nasty to track down, impossible to debug

• But how dangerous is a bug that only bites once out of
4 billion times?

Ignoring the return value of
putIfAbsent

org.jgroups.protocols.pbcast.NAKACK

ConcurrentMap<Long,XmitTimeStat>
 xmit_time_stat = ...;

.....
XmitTimeStat stat = xmit_time_stats.get(key);

if(stat == null) {

 stat = new XmitTimeStat();

 xmit_time_stats.putIfAbsent(key, stat);

}

stat.xmit_reqs_received.addAndGet(rcvd);

stat.xmit_rsps_sent.addAndGet(sent);

misusing putIfAbsent

• ConcurrentMap provides putIfAbsent

• atomically add key → value mapping

• but only if the key isn’t already in the map

• if non-null value is returned, put failed and value returned is
the value already associated with the key

• Mistake:

• ignore return value of putIfAbsent, and

• reuse value passed as second argument, and

• matters if two callers get two different values

Fixed in revision 1.179
org.jgroups.protocols.pbcast.NAKACK

XmitTimeStat stat=xmit_time_stats.get(key);

if(stat == null) {

 stat=new XmitTimeStat();

 XmitTimeStat stat2
 = xmit_time_stats.putIfAbsent(key, stat);
 if (stat2 != null)
 stat = stat2;

}

stat.xmit_reqs_received.addAndGet(rcvd);

stat.xmit_rsps_sent.addAndGet(sent)

Some lessons

• Concurrency is tricky

• putIfAbsent is tricky to use correctly

• engineers at Google got it wrong more than 10% of
the time

• Unless you need to ensure a single value, just use get
followed by put if not found

• If you need to ensure a single unique value shared by
all threads, use putIfAbsent and check return value

Survivor effect

• as code comes off of developers fingertips, it contains bugs

• some of these bugs will cause the software to perform
incorrectly, some will not

• various measures will remove some of the bugs

• unit test, code review, system test

• These measures tend to be more effective at removing bugs
that cause misbehavior than bugs that don't

• Thus, bugs that have been in the system for months or years
are genetically fit at surviving

Mistakes
That
Don’t

Unit Testing

System/Integration Testing

Deployment

Mistakes
That

Matter

Static Analysis

Static analysis earlier is
better

• Find mistakes detected by static analysis before that
are detected using more expensive techniques

• Get them to developers while the code is still fresh in
developers heads, before anyone else is depending on
it or using it

• Fixing a mistake in code last touched 6 months or 6
years ago isn’t fun

• Of course, this only applies if your mistakes are
generally caught by other steps in your quality

Cross-site scripting
public void doGet(HttpServletRequest req,
 HttpServletResponse res) {
 ...

 String target = req.getParameter("url");

 InputStream in = this.getClass()
 .getResourceAsStream("META-INF/resources/"
 + target;

 if (in == null) {
 res.getWriter().println(
 "<p>Unable to locate resource: "
 + target);
 return;
 }

Cross-site scripting

• Putting untrusted/unchecked data directly into
generated html

• can contain Javascript, which gets executed in your
context

• untrusted input can be injected into your database,
or through a URL query parameter

• via a link sent from attacker to victim

Cross site scripting

Attacker

Victim

<a href=”http://host/index.html?
variable=<script>...</script>”>Check this out

Trusted
WebSite

html response contains script injected by
attacker, but treated by victim’s web

browser as though it came from trusted
web site

http://host/a.php?variable=
http://host/a.php?variable=
http://host/a.php?variable=
http://host/a.php?variable=

Security vulnerabilities

• Not exposed by normal/expected use cases

• Need some combination of:

• architectural risk analysis

• careful design

• static analysis

• dynamic testing and analysis

• FindBugs only does simple, shallow analysis for
network security vulnerabilities

Incomparable equality
org.eclipse.jdt.internal.debug.eval.ast.engine.AstInstructionCompiler

SimpleType simpleType = (SimpleType) type;
if ("java.lang.String".equals(simpleType.getName()))
 return Instruction.T_String;

• SimpleType.getName() returns a org.eclipse.jdt.core.dom.Name

• In Eclipse since 2.0 (June 2002)

• Finally fixed June 29, 2010

• https://bugs.eclipse.org/bugs/show_bug.cgi?id=318333

Many variations, assisted by
weak typing in APIs

• Using .equals to compare incompatible types

• Using .equals to compare arrays

• only checks if the same array

• Checking to see if a Set<Long> contains an Integer

• never found, even if the same integral value is
contained in the map

• Calling get(String) on a
Map<Integer,String>

Silent, nasty bugs

• Very hard to find these bugs by inspection

• types not always visible/explicit

• In some cases, could be introduced by refactoring

• Change the key type of a Map from Integer to Long

• Fix all the places where you get type errors

• Leave behind bugs

• Google had an issue with a refactoring that changed a method
to return byte[] rather than String

• introduced silent errors

Bug introduced between
Eclipse 3.5RC1 and RC2

org.eclipse.pde.internal.build.BrandingIron

String target = root + '/' + ...;

File rootFolder
 = getCanonicalFile(new File(initialRoot));

if (!rootFolder.equals(target)) {
 rootFolder.delete();
 ...
 }

Listen to your bug stories

• In Joshua Bloch’s 2009 JavaOne, he said that his #1
takeaway message was don’t lock on
ConcurrentMaps

• My reaction was “Really?”

• Clearly wrong and a bug, but surely that so obviously
wrong it would be exceptionally rare

• But I wrote a detector for FindBugs

JBoss 5.1.0-GA

• 22 synchonizations on ConcurrentHashMap

• 9 synchronizations on CopyOnWriteArrayList

• In Java 5, COWAL implementation using
synchronized(this)

• in Java 6+ COWAL implementation synchronizes on
internal Lock object

• 3 synchronizations on AtomicBoolean

Google code

• Just checked overnight

• more than 150 synchronizations on some class in
java.util.concurrent...

• none on CopyOnWriteArrayList

• Might not be a problem

• Sometimes used to allow for wait/notify

• Sometimes just a handy object to lock

• Only a problem if expected to block other concurrent
actions on object

Improving software
quality

Improving software quality

• Many different things can catch mistakes and/or
improve software quality

• Each technique more efficient at finding some
mistakes than others

• Each subject to diminishing returns

• No magic bullet

• Find the right combination for you and for the
mistakes that matter to you

Test, test, test...

• Many times FindBugs will identify bugs

• that leave you thinking “Did anyone test this code?”

• And you find other mistakes in the same vicinity

• FindBugs might be more useful as an untested code detector than as a
bug detector

• Overall, testing is far more valuable than static analysis

• I’m agnostic on unit tests vs. system tests

• But no one writes code so good you don’t need to check that it does
the right thing

• I’ve learned this from personal painful experience

Dead code

• Many projects contain lots of dead code

• abandoned packages and classes

• classes that implement 12 methods; only 3 are used

• Code coverage is a very useful tool

• but pushing to very high code coverage may not be
worthwhile

• you’d have to cover lots of code that never gets
executed in production

Code coverage from
production

• If you can sample code coverage from production,
great

• look for code executed in production but not
covered in unit or system test

Cool idea

• If you can’t get code coverage from production

• Just get list of loaded classes

• just your code, ignoring classes loaded from core
classes or libraries

• Very light weight instrumentation

• Log the data

• could then ask queries such as “Which web services
loaded the FooBar class this month?”

Using FindBugs to find
mistakes

• FindBugs is accurate at finding coding mistakes

• 75+% evaluated as a mistake that should be fixed

• But many mistakes have low costs

• memory/type safety lowers cost of mistakes

• If applied to existing production code, many expensive
mistakes have already been removed

• perhaps painfully

• Need to lower cost of using FindBugs to sell to some
projects/teams

FindBugs integration at
Google

• FindBugs has been in use for years at Google

• In the past week, finally turned on as a presubmit
check at Google

•When you want to commit a change, you need a code
review

• now, FindBugs will comment on your code and you
need to respond to newly introduced issues and
discuss them with the person doing your code
review

• First research paper published in 2004

• FindBugs 1.0 released in 2006

• 1,150,000+ downlads from 160+ countries

• Released 1.3.9 in last year

•Working towards 2.0.0 release

FindBugs 2.0

• FindBugs analysis engine continues to improve, but only
incrementally

• Focus on efficiently incorporating static analysis into
the large scale software development

• Review of issues done by a community

• Once issue is marked as “not a bug”, never forget

• Integration into bug tracking and source code version
control systems

Bug ranking

• FindBugs reported a priority for an issue, but it was
only meaningful when comparing instances of the same
bug pattern

• a medium priority X bug might be more important
than a high priority Y bug

• Now each issue receives a bug rank (a score, 1-20)

• Can be customized according to your priorities

• Grouped into Scariest, Scary, Troubling, and Of
Concern

FindBugs community review

•Whenever / where ever you run FindBugs, after
completing or loading an analysis

• it talks to the cloud

• sees how we’ve been seeing this issue

• sees if anyone has marked the issue as “should fix” or
“not a bug”

• As soon you classify an issue or enter text about the
issue, that is sent to the cloud

• Talk

More cloud integration

• Integration with bug tracking systems

• One click to bring up pre-populated web page in bug
tracker describing issue

• If bug already filed against issue, click shows you
existing issue in bug tracker

• Integration with web based source viewers, such as
FishEye

• Allow viewing of file history, change lists, etc.

• Open source system from UMD for managing
student programming projects

• automated web-based testing, with controlled
opportunities for testing to help students learn good
software skills and TDD

• Code review system to allow and assign code
reviews by instructions and students

• http://marmoset.cs.umd.edu/

• http://sourceforge.net/projects/marmoset/

http://marmoset.cs.umd.edu
http://marmoset.cs.umd.edu

