Defective Java Code:

Mistakes That Matter
William Pugh e o

Univ. of Maryland AN

DEFECTIVE JAVA CODE:
MISTAKES THAT MATTER

William Pugh (5 a8
A 201
Univ. of Maryland (j} o

())
= “ .
L 40
|
INTERNATIONAL e
 SORTWARE DEVELOPMENT ¢
| | CE formeriy known|& JA0O

® Use to get excited by being able to automatically find
bugs in code

® oo easy, not rewarding enough

® Now, focused on helping people find and fix mistakes
that matter

Code has bugs

® NO perfect correctness or security

® you shouldn’t try to fix everything that is wrong with
your code

® engineering effort is limited and zero sum

Defective Java Code

Learning from mistakes

' -
‘.

® I'm the lead on FindBugs
® static analysis tool for defect detection
® Spent a lot of time at Google
® Found thousands of errors
® not style issues, honest to god coding mistakes

® but mistakes found weren’t causing problems in
production

FindBugs fixit @ Google
May 2009

® 4,000 issues to review

L

® Bug patterns most relevant to @@
Google

® 8’000 reviews > 1 ,800 bugS f||ed
> more than 600 fixed

> More than 1,500 issues
® many issues independently removed In several days

reviewed by multiple engineers

® /5+9% must/should fix

FindBugs demo

- n 0 i O BN Y —————t 1
Class uaia filter CFilter) ﬁfCompressedReadStream.java in sun.jvm.hotspot.code View in browser
- \ / :—) .‘
58
Group bugs by: | Bug Kind | Bug Pattern < Bug Rank | Designation 59 public float readFloat() {
— |70 return Float.intBitsToFloat(reverseInt(readInt()));
@ Bugs (73) al 71)
v @ Bad shift (2) m é ublic double readDouble {
v @ 32 bit int shifted by an amount not in the range 0..31 (2) /, P iml: rh = readInt(); ()
L 432 bit int shifted by 32 bits in readDouble() 75 int rl = readInt();
® 32 bit int shifted by 32 bits in swapLong(long) 76 ’;n: 'l\ . reverseintzrll\;;
| |/ / in = reverseln r H
:": Bad use of return value from method (8) Xl |78 return Double.longBitsToDouble((h << 32) | ((long)l & O0x
Evaluations ' q }
, 30
i ;‘3 21 public long readLong() {
| 32 long low = readSignedInt() & 0x00000000FFFFFFFFL;
83 long high = readSignedInt();
34 return (high << 32) | low;
First seen 06/02, 2009 35}
50
. . Y L ———
pwagland@gmail.com @ 05/27, 2010: should fix =5 : ,
The code as it stands does not work correctly, but | have not verified that it ;‘ jf internals only below this point
is used. 90
91 <
bill.pugh@gmail.com @ 10/06, 2010: mostly harmless N - N
| | | (_Find) (_Next) (_Previous)
AW
32 bit int shifted by 32 bits
At CompressedReadStream.java:[line 78]
In method sun.jvm.hotspot.code.CompressedReadStream.readDouble() [Lines 74 - 78]

Shifted by 32 bits
Local variable named h

32 bit int shifted by an amount not in the range 0..31

The code performs shift of a 32 bit int by a constant amount outside the range 0..31. The effect of this is to use the lower 5 bits of the integer value to decide
how much to shift by (e.g., shifting by 40 bits is the same as shifting by 8 bits, and shifting by 32 bits is the same as shifting by zero bits). This probably isn't

what was expected, and it is at least confusing.

9860 bugs hidden by filters

FindBugs Cloud:
Signed in - bill.pugh@gmail.com

@ UNIVERSITY OF

| earned wisdom

® Static analysis typically finds mistakes

® but some mistakes don’t matter

® need to find the intersection of stupid and important
® The bug that matter depend on context

® Static analysis, at best, might catch 5-10% of your software quality
problems

e 80+% for certain specific defects
® but overall, not a magic bullet

® Used effectively, static analysis is cheaper than other techniques for
catching the same bugs

Audience interaction time

® Which code is better?

a) i1f (x.equals("name")) { ... }

b) 1f ("name'".equals(x)) { ... }

Discussion

® "name" .equals (x) handles x being null by
computing false

® x.equals ("name") throws NPE if x is null
® Do | anticipate that x might be null?

e |f | don't anticipate that x might be null, and it is,
what would | prefer?

® a silent behavior | didn't anticipate

® a runtime exception

VVhen you write code,
it has errors

® Untested code likely isn't correct
® unit tests / regression tests / system tests

® Your code probably doesn't correctly handle situations
you didn't anticipate

® But perfect can only be approached asymptotically

® |f you can't prevent an error, can you detect it and log
it?

® if you detect it, is it OK to fail safe?

Runtime exceptions can be
your friend

® Pretty common to wrap operations in a try/catch
block

® web transactions, processing a GUI event, etc.

® Most systems will degrade gracefully when they hit
runtime exceptions

® the action that threw the exception fails, but the
system keeps going

® |[f something unanticipated happens, | want to know it

Testing equality to a string
constant, revisited

® What if | know x might be null? Which do | prefer?
a) X !'= null && x.equals("foo")
b) "foo" .equals (x)
(a) clearly documents that x might be null,

(b) might just have been chosen because developer read
it in a style guide, although developer doesn't anticipate
x will ever be null

Understand your risk/bug
environment

® What are the expensive risks?

® |s it OK to just pop up an error message for one web
request or GUI event!

® how do you ensure you don't show the fail whale to
everyone!

® Could a failure destroy equipment, leak or loose
sensitive/valuable data, kill people!?

mistakes charactertistics

® Will you know quickly if it manifests itself?
® What techniques are good for finding it?
® |s unit testing effective?

® Might a change in circumstances cause it to start
manifesting itself?

® What is the cost of it manifesting itself?

® |f is does manifest itself, will it come on slowly or in a
tidal wave

Bugs in Google's code

® Google's code base contains thousands of "serious” errors

® code that could never function in the way the developer
intended

® |f noticed during code review, would definitely have been fixed

® Most of the issues found by looking at Google's entire codebase
have been there for months or years

® despite efforts, unable to find any causing noticeable problems in
production

As issues/bugs age

® 5O up:

® cost of understanding potential issues, deciding if they
are bugs

® cost and risk of changing code to remedy bugs
® soes down:

® chance that bug will manifest itself as misbehavior

More efficient to look at
issues early

® be prepared for disappointment when you look at old
Issues

® may not find many serious issues

® don't be too eager to "fix" all the old issues

VVhere bugs live

® code that is never tested
® |f code isn't unit or system tested, it probably doesn't work

® throw new UnsupportedOperationException() Is
vastly underrated

® if your current functionality doesn't need an equals
method, and you don't want to write unit tests for it, make
it throw UnsupportedOperationException

® Particularly an issue when you implement an interface with
|2 methods, and your current use case only needs 2

Java Bug Bestiary

Null bug

® From Eclipse, 3.5RCa3:

org.eclipse.update.internal.ui.views.FeatureStateAction

if (adapters == null && adapters.length == 0)
return;

® Clearly a mistake
® First seen in Eclipse 3.2
® but in practice, adapters is probably never null
® |s there any impact from this!?
® we would probably notice a null pointer exception

® we don’t immediately return if length is O

Cost when a mistake causes
a fault/failure

® How quickly/reliability would you notice!?

® What is the impact of the misbehavior caused by the
mistake!?

® How easily could you diagnose the problem and the fix?

® VWhat is the cost to deliver a fix?

Null pointer bugs
@ Google

® Google's code contains more than a thousand null
pointer bugs

® statements or branches that if executed guarantee a
null pointer exception

® From looking at exceptions logged in production, can
tell you that few if any of the NPE that occur in
production are caused by those kinds of mistakes

® typically, caused because message doesn't have an
expected component

Mistakes in web services

® Some mistakes would manifest themselves by throwing
a runtime exception

® Should be logged and noticed

® |f it isn’t happening now, a change might cause it to
start happening in the future

® But if it does, the exception will likely pinpoint the
mistake

® And pushing a fix into production is cheaper than
pushing a fix to desktop or mobile applications

Expensive mistakes (your
results may vary)

® Mistakes that might cost millions of dollars on the first
day they manifest

® Mistakes that silently cause the wrong answer to be
computed

® might be going wrong now, millions of times a day

® or might be OK now, but when it does go wrong, it
won’t be noticed until somewhere downstream of
mistake

® Mistakes that are expensive or impossible to fix

Using reference equality
rather than .equals ,

from Google’s code (no one is perfect)

class MutableDouble {
private double value ;

public boolean equals(final Object o) {
return o instanceof MutableDouble &&
((MutableDouble)o) .doubleValue ()

== doubleValue();

}

public Double doubleValue() {
return value ;

}

Using == to compare
objects rather than .equals

® For boxed primitives, == and != are computed using
pointer equality, but <, <=, >,>= are computed by
comparing unboxed primitive values

® Sometimes, equal boxed values are represented using
the same object

® but only sometimes
® This can bite you on other classes (e.g.,, String)

® but boxed primitives is where people get bit

Heisenbugs vs. deterministic
bugs

® A Heisenbug is a mistake that only sometimes
manifests itself (e.g.,a data race)

® Jesting not likely to show error
o if a test fails, rerunning the test may succeed
® Can be very nasty to track down, impossible to debug

® But how dangerous is a bug that only bites once out of
4 billion times!?

lenoring the return value of
putlfAbsent

org.jgroups.protocols.pbcast. NAKACK

ConcurrentMap<Long,XmitTimeStat>
xmit time stat = ...;

XmitTimeStat stat = xmit time stats.get(key);
if(stat == null) {

stat = new XmitTimeStat();

xmit_time_ stats.putIfAbsent(key, stat);

}
stat.xmit_reqs received.addAndGet (rcvd);

stat.xmit_ rsps sent.addAndGet (sent);

® ConcurrentMap provides putlfAbsent

® atomically add key — value mapping
® but only if the key isn’t already in the map

® if non-null value is returned, put failed and value returned is
the value already associated with the key

® Mistake:
® ignore return value of putlfAbsent, and
® reuse value passed as second argument, and

® matters if two callers get two different values

Fixed in revision |.179

org.jgroups.protocols.pbcast. NAKACK

XmitTimeStat stat=xmit time stats.get(key);

if(stat == null) { s 23
stat=new XmitTimeStat(); ' |

XmitTimeStat stat2

= xmit_time_ stats.putIfAbsent(key, stat);
if (stat2 != null)
stat = stat2;

}

stat.xmit reqs received.addAndGet (rcvd);

stat.xmit rsps sent.addAndGet (sent)

Some lessons

® Concurrency is tricky
® putIfAbsent is tricky to use correctly

® engineers at Google got it wrong more than 10% of
the time

® Unless you need to ensure a single value, just use get
followed by put if not found

® |[f you need to ensure a single unique value shared by
all threads, use putIfAbsent and check return value

Survivor effect

® as code comes off of developers fingertips, it contains bugs

® some of these bugs will cause the software to perform
incorrectly, some will not

® various measures will remove some of the bugs
® unit test, code review, system test

® These measures tend to be more effective at removing bugs
that cause misbehavior than bugs that don't

® Thus, bugs that have been in the system for months or years
are genetically fit at surviving

Mistakes Mistakes

That That
Matter Don’t

Unit Testing

System/Integration Testing

Deployment

Static Analysis

Static analysis earlier is
better

® Find mistakes detected by static analysis before that
are detected using more expensive techniques

® Get them to developers while the code is still fresh in
developers heads, before anyone else is depending on
It or using It

® Fixing a mistake in code last touched 6 months or 6
years ago isn’t fun

® Of course, this only applies if your mistakes are
generally caught by other steps in your quality

Cross-site scripting

public void doGet (HttpServletRequest req,
HttpServletResponse res) {

String target = reqg.getParameter("url');

InputStream in = this.getClass ()
.getResourceAsStream("META-INF/resources/"
+ target;

if (in == null) {
res.getWriter().println(
"<p>Unable to locate resource:
+ target);

return;

}

Cross-site scripting

® Putting untrusted/unchecked data directly into
generated htm|

® can contain Javascript, which gets executed in your
context

® untrusted input can be injected into your database,
or through a URL query parameter

® via a link sent from attacker to victim

Cross site scripting

<a href="http://host/index.html?
variable=<script>...</script>">Check this out

Trusted
VVebSite

html| response contains script injected by
attacker, but treated by victim’s web
browser as though it came from trusted
web site

http://host/a.php?variable=
http://host/a.php?variable=
http://host/a.php?variable=
http://host/a.php?variable=

Security vulnerabilities

® Not exposed by normal/expected use cases
® Need some combination of:

® architectural risk analysis

® careful design

® static analysis

® dynamic testing and analysis

® FindBugs only does simple, shallow analysis for
network security vulnerabilities

Incomparable equality

org.eclipse.jdt.internal.debug.eval.ast.engine.AstlnstructionCompiler
SimpleType simpleType = (SimpleType) type;

if ("java.lang.String".equals(simpleType.getName()))
return Instruction.T String;

® SimpleType.getName() returns a org.eclipse.jdt.core.dom.Name

® |n Eclipse since 2.0 (June 2002)
® Finally fixed June 29,2010

® https://bugs.eclipse.org/bugs/show_ bug.cgi?id=318333

Many variations, assisted by
weak typing in APIs

® Using .equals to compare incompatible types
® Using .equals to compare arrays
® only checks if the same array
® Checking to see if a Set<Long> contains an Integer

® never found, even if the same integral value is
contained in the map

® Calling get (String) ona
Map<Integer,String>

Silent, nasty bugs

® Very hard to find these bugs by inspection
® types not always visible/explicit
® |In some cases, could be introduced by refactoring
® Change the key type of a Map from Integer to Long
® Fix all the places where you get type errors
® | eave behind bugs

® Google had an issue with a refactoring that changed a method
to return byte[] rather than String

® introduced silent errors

Bug introduced between
Eclipse 3.5RC| and RC2

org.eclipse.pde.internal.build.Brandinglron

File rootFolder
= getCanonicalFile(new File(initialRoc¢

if (!rootFolder.equals(target)) {
rootFolder.delete();

}

Listen to your bug stories

® |n Joshua Bloch’s 2009 JavaOne, he said that his #|
takeaway message was don’t lock on

ConcurrentMaps

® My reaction was “Really?”

® Clearly wrong and a bug, but surely that so obviously
wrong it would be exceptionally rare

® But | wrote a detector for FindBugs

|Boss 5.1.0-GA

® 72 synchonizations on ConcurrentHashMap
® 9 synchronizations on CopyOnWriteArrayList

® |n Java 5, COWAL implementation using
synchronized(this)

® in Java 6+ COWAL implementation synchronizes on
internal Lock object

® 3 synchronizations on AtomicBoolean

Google code

® Just checked overnight

® more than |50 synchronizations on some class in
java.util.concurrent...

® none on CopyOnWriteArrayList
® Might not be a problem

® Sometimes used to allow for wait/notify

® Sometimes just a handy object to lock

® Only a problem if expected to block other concurrent
actions on object

Improving software
quality

Improving software quality

® Many different things can catch mistakes and/or
improve software quality

® Each technique more efficient at finding some
mistakes than others

® Fach subject to diminishing returns
® No magic bullet

® Find the right combination for you and for the
mistakes that matter to you

Test, test, test...

® Many times FindBugs will identify bugs
® that |leave you thinking “Did anyone test this code?”
® And you find other mistakes in the same vicinity

® FindBugs might be more useful as an untested code detector than as a
bug detector

® Overall, testing is far more valuable than static analysis
® [’'m agnostic on unit tests vs. system tests

® But no one writes code so good you don’t need to check that it does
the right thing

® |'ve learned this from personal painful experience

Dead code

® Many projects contain lots of dead code

® abandoned packages and classes

® classes that implement |2 methods; only 3 are used
® Code coverage is a very useful tool

® but pushing to very high code coverage may not be
worthwhile

® you'd have to cover lots of code that never gets
executed in production

Code coverage from
production

® |f you can sample code coverage from production,
great

® |ook for code executed in production but not
covered in unit or system test

Cool idea

® |f you can’t get code coverage from production
® |ust get list of loaded classes

® just your code, ignoring classes loaded from core
classes or libraries

® Very light weight instrumentation
® | og the data

® could then ask queries such as “VWhich web services
loaded the FooBar class this month?”

Using FindBugs to find
mistakes

® FindBugs is accurate at finding coding mistakes

® /5+% evaluated as a mistake that should be fixed
® But many mistakes have low costs

® memory/type safety lowers cost of mistakes

e |f applied to existing production code, many expensive
mistakes have already been removed

® perhaps painfully

® Need to lower cost of using FindBugs to sell to some
projects/teams

FindBugs integration at
Google

® FindBugs has been in use for years at Google

® |n the past week, finally turned on as a presubmit
check at Google

® When you want to commit a change, you need a code
review

® now, FindBugs will comment on your code and you
need to respond to newly introduced issues and
discuss them with the person doing your code
review

® First research paper published in 2004

® FindBugs 1.0 released in 2006
® |, 150,000+ downlads from |60+ countries

® Released [.3.9 in last year

® Working towards 2.0.0 release

FindBugs 2.0

® FindBugs analysis engine continues to improve, but only
incrementally

® Focus on efficiently incorporating static analysis into
the large scale software development

® Review of issues done by a community
® Once issue is marked as “not a bug”, never forget

® [ntegration into bug tracking and source code version
control systems

Bug ranking

® FindBugs reported a priority for an issue, but it was
only meaningful when comparing instances of the same
bug pattern

® 3 medium priority X bug might be more important
than a high priority Y bug

® Now each issue receives a bug rank (a score, |-20)
® Can be customized according to your priorities

® Grouped into Scariest, Scary, Troubling, and Of
Concern

FindBugs community review

® VWhenever / where ever you run FindBugs, after
completing or loading an analysis

® it talks to the cloud
® sees how we've been seeing this issue

® sees if anyone has marked the issue as “should fix” or
“not a bug”

® As soon you classify an issue or enter text about the
issue, that is sent to the cloud

® Jalk

More cloud integration

® Integration with bug tracking systems

® One click to bring up pre-populated web page in bug
tracker describing issue

® |f bug already filed against issue, click shows you
existing issue in bug tracker

® [ntegration with web based source viewers, such as
FishEye

® Allow viewing of file history, change lists, etc.

The

Marmoset
Project

WHAT IS YOUR ///
PASSlﬂN s
) _;é

® Open source system from UMD for managing
student programming projects

® automated web-based testing, with controlled

opportunities for testing to help students learn good
software skills and TDD

® Code review system to allow and assign code
reviews by instructions and students

® http://marmoset.cs.umd.edu/

® http://sourceforge.net/projects/marmoset/

http://marmoset.cs.umd.edu
http://marmoset.cs.umd.edu

