
1

<Insert Picture Here>

The Java Petstore v.Cloud
Building an ecommerce system to survive Cyber Monday

Cameron Purdy

Oracle Vice President of Development

3

About the Speaker: Cameron Purdy

• Vice President of Development,

Oracle Coherence Data Grid

• Founder and CEO of Tangosol,

acquired by Oracle in 2007

• Involved with 5 of the top 10

eCommerce sites (based on

Cyber Monday 2009 rankings)

4

<Insert Picture Here>

Program Agenda

• Concepts of Scalability and HA (S+HA)

• Applying S+HA to aspects of eCommerce

– Problem

– Solution

– Example

• Conclusion

5

Concepts

6

Scalability

• Push the ability to answer

the question as close to

the user as possible

– AJAX, CDN/Edge Caching,

Global Load Balancing

• Partition & Load-Balance

– Horizontal scalability

– Design for elasticity

• Only “buy” what you need

– What doesn’t scale easily?

State Consistency, Ordering

& Durability guarantees

7

Scalability: Orders of Magnitude

• CPU+RAM

• SSD (Local Flash)

• HDD (Local Disk)

• LAN Asynchronous

• LAN Partitionable

• WAN Asynchronous

• WAN Partitionable

• LAN Centralized

• WAN Centralized

8

High Availability (HA)

• The concept behind HA is

simple: No SPOF

• Three simple solutions:

– Stateless – any server can

provide availability

– Cached – most information

can be recent, not current

– Replicated – only essential

information is guaranteed to

be consistent and durable

• Eliminate SPOFs: Go

redundant + load balance

9

S+HA = Scalability + High Availability

• Natural Partners: S+HA

– Scale Out is Redundancy

– Load Balancing is Failover

– Geo-distribution is S+HA

• The same solutions:

– Stateless – always S+HA

– Cached – S+HA iff recent

data is in cache or loadable

– Replicated – Challenging!

• You must partition!

• Synchronous Geo-

Replication is hard!

10

Why not “Performance”?

• It’s is a red herring

– No substitute for scalability

– When a user is waiting on a

response from a busy site, it

may feel like a performance

problem, but it is actually a

scalability problem

• Solving scalability first

allows you to address

performance

– SSL acceleration, Caching,

CDN, geo-locality, AJAX

11

Defining “Scalable Performance”

• Scalable Performance is

focused on insuring that the

application performance

does not degrade beyond

defined boundaries as the

application gains additional

users, how resources must

grow to ensure that, and

how one can be certain that

additional resources will

solve the problem

12

Application

13

Catalog

• Problem: Large volumes

of high-frequency, read-

mostly, hierarchical data

– Update propagation

– Tied to Inventory & Search

• Solution: Pre-massage

data, key-based access

only, push content out

– No Queries

– Pre-build and cache trees

• Example

14

Inventory

• Problem: Separate SOR,

free inventory affects

catalog, search and order

placement

• Solution: Real-time

inventory mirrors SOR

– Partition locally, async push

globally, async refresh

– Enables depletion events

– Eliminates most SOR load

• Example

15

Search

• Problem: Computationally

and data intensive; better

search translates directly

to increased revenue

• Solution: Design search

as stateless as possible

to enable the cloud option

– Catalog by periodic push

and event-based update

– Inventory by exception

• Example

16

User Sessions

• Problem: Mutable; only

needed by one user; must

survive failure; total size

grows in direct relation to

concurrent user count

• Solution: Localize to a

site (ownership)/server

(partition); geo replicate

async and transfer sync

• Example

17

Shopping Cart

• Problem: Must survive a

user session, be durable,

tied to account as soon

as possible, persisted to

free up memory

• Solution: Pre-auth, use a

session; make durable

post-auth

– Session caches the cart

– Async persist e.g. write-

behind or session expiry

• Example

18

Order Placement

• Problem: Transactional

bottleneck; involves

inventory and other SOR;

durability implications for

billing, fulfillment

• Solution: Fully async

workflow; minimize

synchronous checks up

front (inventory & credit)

• Example

19

A/B Testing

• Problem: How to test

possible changes to the

application to measure

impact on page time, user

conversion, margin, etc.

• Solution: Tie to user

session, record stats, tally

asynchronously e.g. when

the session expires

• Example

20

Conclusion

21

Conclusion

• Solve scalability at an

architectural level; it’s a

make-or-break

– Partition, shard, distribute

– Cache and/or replicate

“must be present” state

• HA only matters when

you need it, and it’s only

missing when it matters

– Redundancy at all levels

– Isolate “must survive” state;

nothing else matters

22

23

