
The Future of JavaScript
I mean ECMAScript

Douglas Crockford

Yahoo!



Welcome to the Future!

Such as it is.



The World’s Most Popular 

Programming Language



The World’s Most Popular 

Programming Language

The World’s Most Unpopular 

Programming Language



ECMAScript is the language that 

people use without bothering to 

learn it first.

Programming is complicated 

business. It should never be 

undertaken in ignorance.



Functions are first class.

Static Scoping. (Mostly.)



Writing in ECMAScript 

language without 

understanding closure is like 

writing in Java without 

understanding classes.



Global

var names = ['zero', 'one', 'two', 

'three', 'four', 'five', 'six', 

'seven', 'eight', 'nine'];

var digit_name = function (n) {

return names[n];

};

alert(digit_name(3));    // 'three'



Slow

var digit_name = function (n) {

var names = ['zero', 'one', 'two', 

'three', 'four', 'five', 'six', 

'seven', 'eight', 'nine'];

return names[n];

};

alert(digit_name(3));    // 'three'



Closure

var digit_name = (function () {

var names = ['zero', 'one', 'two', 

'three', 'four', 'five', 'six', 

'seven', 'eight', 'nine'];

return function (n) {

return names[n];

};

}());

alert(digit_name(3));    // 'three'



Soft Objects

• An object is simply a dynamic container of 

name/value pairs.

• New pairs (or properties) may be added at 

any time.

• The value of a property may be a function.

• The pseudo-parameter this is bound at 

invocation time.

• An object can inherit from another object.



Object Literals

• Like JSON objects, but more powerful.

• Values can be obtained from expressions.

• Values can be functions.





Scheme SelfJava

LiveScript



Scheme SelfJava

LiveScript
JavaScript



Scheme SelfJava

LiveScript
JavaScript

ECMAScript



ECMAScript

• 1999 Third EditionES3

• 2009 Fifth Edition ES5

– Default       Strict

• Avoid ES5/Default.

• For the short term, work in the intersection 

of ES3 and ES5/Strict

• For the long term, work with ES5/Strict.



Harmony

• The code name of the next proposal is Harmony, 
not ES6.

• We want to avoid giving proposals edition 
numbers because it gives the false appearance 
of inevitability or momentum.

• Harmony will be built on the Strict Language.

• Harmony will probably have incompatible 
syntax, so programs written in the Harmony 
language will fail on all pre-Harmony browsers. 

• Hopefully the IE6 problem will be gone by the 
time our work is done.



JavaScript is the virtual 

machine of the Internet.



Server Side JavaScript

• This is not a new idea.

• Netscape offered an SSJS product in 
1996.

• It was a page template system using a 
<server> tag and a write function to 
insert matter in the output stream.

• It had all of the disadvantages of the other 
page template systems with a really slow 
JS engine.



Threading

Pro

• No rethinking is 

necessary.

• Blocking programs are 

ok.

• Execution continues as 

long as any thread is not 

blocked.

Con

• Stack memory per thread.

• If two threads use the 

same memory, a race 

may occur.

• Overhead.

• Deadlock.

• Thinking about reliability 

is extremely difficult.

• System/Application 

confusion.



Fortunately, there is a model 

that completely avoids all of 

the reliability hazards of 

threads.



The Event Loop!



Browser Event Loop

• Event queue containing callback functions. 
(timer, ui, network)

• Turn: Remove one callback from the 
queue. It runs to completion.

• Prime Directive: Never block. Never wait. 
Finish fast.

• The Event Loop is one of the best parts of 
the browser.

• Avoid: alert, confirm , prompt, XHR 
synchronous.



JavaScript does not have 
READ.

That has always been seen as a 

huge disadvantage, but it is 

actually a wonderful thing.



Event Loop

Pro

• Free of races and 

deadlocks.

• Only one stack.

• Very low overhead.

• Resilient. If a turn fails, 

the program can still go 

on.

Con

• Programs must never 

block.

• Programs are inside out! 

Waa!

• Turns must finish quickly.



Long running tasks 

• Two solutions for long running programs:

1. Eteration: Break the task into multiple 

turns.

2. Move the task into a separate process 

(workers).



What about Server Side 

JavaScript with an Event 

Loop?



node.js
• node.js implements a web server in a 

JavaScript event loop.

• It is a high-performance event pump.

• fs.read(fd, length, position, encoding, 

function (err, str, bytesRead) 

{...})

• Everything is non-blocking.

• Except: 

– some synchronous functions

– require



Your stuff runs on both sides

JS/V8 Browser

DOM
JS

DOM node.js

YUI3

Your stuff Your stuff

YUI3



Requestor

myRequestor = function (sync) {

service_request(arguments, 

function (result) {

sync(result, error);

});

};

par([requestors…], sync, timeout);

seq([requestors…], sync, timeout);



Security





Cross site scripting attacks 

were invented in 1995.

We made no progress on the 
fundamental problem.



XSS has two causes:

1. Sharing of the global object.

The Principle of Excessive 

Authority.

2. Misinterpretation of HTML.



What can an attacker do if he 

gets some script into your 

page?



An attacker can request 

additional scripts from any server 

in the world.

Once it gets a foothold, it can 

obtain all of the scripts it needs.



An attacker can read the 

document.

The attacker can see everything 

the user sees.



An attacker can make 

requests of your server. 

Your server cannot detect that the 

request did not originate with your 

application.



If your server accepts SQL 

queries, then the attacker gets 

access to your database.

SQL was optimized for

SQL Injection Attacks



An attacker has control over the 

display and can request 

information from the user. 

The user cannot detect that the 

request did not originate with your 

application.



An attacker can send information 

to servers anywhere in the world.



The consequences of a 

successful attack are horrible.

Harm to customers. 

Loss of trust. 

Legal liabilities. 



The browser does not prevent 

any of these terrible things.

Web standards require these 

weaknesses.



15 Years 

of XSS



HTML5

A big step in the wrong direction.



Tragically, HTML5 ignores 

and worsens the XSS 

problem.
“…HTML doesn’t ever have 

markup injection vulnerabilities…”
http://lists.w3.org/Archives/Public/public-webapps/2010AprJun/0648.html



My Recommendation

• Suspend the HTML5 standards process.

• Repair the XSS hazard.

• Review the HTML5 proposals with respect 

to the new security discipline.



And then there is 

the Mashup Problem

• A mashup is the combining of programs 
representing multiple interests.

• The browser confuses those interests.

• A mashup is a self-inflicted XSS attack.

• So an advertiser on a page gets the same 
privileges as an Ajax library or an analytics 
file, which is the same as the main 
applications, which is the same as any 
XSS code that falls into the page.

• Advertising is a self-inflicted XSS attack.



Safe JavaScript Subsets

Deny access to the global object and the DOM.

Caja.  http://code.google.com/p/google-caja/

ADsafe.  http://www.ADsafe.org/



ECMAScript Fifth Edition Strict

December 2009



ES5/Strict makes it possible to 

have static verification of third 

party code without over-

constraining the programming 

model.
The best of both Caja and 

ADsafe.



The IE6 Problem



IE6
MUST
DIE!



IE7
MUST
DIE!



IE8
MUST
DIE!



IE9



Thank you and good night.


