
© 2010 SpringSource, A division of VMware. All rights reserved © 2010 SpringSource, A division of VMware. All rights reserved

Spring - Architectures,
Patterns and Large
Applications

© 2010 SpringSource, A division of VMware. All rights reserved © 2010 SpringSource, A division of VMware. All rights reserved

Who are you?

3 3

Spring in One Slide

<bean id="dataSource" class="....BasicDataSource">	
 <property name="username" value="ewolff" />	
</bean>

<bean id="transactionManager"	
 class="....DataSourceTransactionManager">	
 <property name="dataSource" ref="dataSource" />	
</bean>	

4 4

Before we even start
 Let us talk about infrastructure configuration first

• Database, transactions etc

 Code is not under your control
• e.g. BasicDataSource, PlatformTransactionManager etc
• So no way to add annotations

 Different configurations
• test: Tomcat
• production: full Java EE

5 5

Tips on Infrastructure Configuration
 Separate from rest of configuration

 Probably in an XML file
• Can be changed using a text editor
• No changes to code needed
•  i.e. no recompile, redeploy …

 XML file choose the type of environment
• Tomcat
• Java SE for JUnit Tests
• Full Java EE

 Use PropertyPlaceholderConfigurer to set machine
specific values

6 6

Example

<bean class="....PropertyPlaceholderConfigurer">	
 <property name="location" value="db.properties" />	
</bean>	
<bean id="transactionManager"	
 class="....DataSourceTransactionManager">	
 <property name="dataSource" ref="dataSource" />	
</bean>	

<bean id="dataSource" class="....BasicDataSource"	
 destroy-method="close">	
 <property name="driverClassName"	
 value="${db.driverClassName}" />	
 <property name="url" value="${db.url}" />	
 <property name="username" value="${db.username:sa}" />	
 <property name="password" value="${db.password:}" />	
</bean>

Specific for
the type of
infrastructure:
Java SE
Doesn't use
Java EE

Specific for a machine

7 7

Alternative: context namespace
 + shorter
 - much less flexible

<context:property-placeholder location="db.properties" />	
<bean id="transactionManager"	
 class="....DataSourceTransactionManager">	
 <property name="dataSource" ref="dataSource" />	
</bean>	
<bean id="dataSource" class="....BasicDataSource"	
 destroy-method="close">	
 <property name="driverClassName"	
 value="${db.driverClassName}" />	
 <property name="url" value="${db.url}" />	
 <property name="username" value="${db.username:sa}" />	
 <property name="password" value="${db.password:}" />	
</bean>

Specific for a machine

8 8

This approach is quite powerful
 Spring Beans can be created depending on the

environment

<alias name="dataSource.${environment}"	
 alias="dataSource" />	

<bean id="dataSource.jse"	
 class="org.apache.commons.dbcp.BasicDataSource"	
 lazy-init="true" />	

<bean id="dataSource.jee"
class="org.springframework.jndi.JndiObjectFactoryBean"	
 lazy-init="true">	
 <property name="jndiName" value="jdbc/dataSource" />	
</bean>	

© 2010 SpringSource, A division of VMware. All rights reserved © 2010 SpringSource, A division of VMware. All rights reserved

Jürgen spoke about
upcoming features in
3.1 for this

© 2010 SpringSource, A division of VMware. All rights reserved © 2010 SpringSource, A division of VMware. All rights reserved

On to the rest of the
system

11 11

Architecture
The software architecture of a program or computing
system is the

structure
or structures of the system, which comprise software
components,
the

externally visible properties
of those components, and the

relationships
between them.

 How can you define an architecture using Spring?

12 12

The example: Spring Biking!
 We need...

• Catalog of all available Mountain Bike parts and bikes
• System to configure and build custom Mountain Bikes
• System for customer data
• Track orders and repairs

© 2010 SpringSource, A division of VMware. All rights reserved © 2010 SpringSource, A division of VMware. All rights reserved

Parts of an
Architecture:
Prolog

14 14

Parts of an Architecture - Prolog
 Object: Information Hiding
 Data may not be accessed from the outside directly

15 15

Classes
 ...define types of objects
 May provide specific implementations for methods (e.g.

customize())
 White box reuse

16 16

Dependency Injection adds

 Explicit context dependencies:
setter method, constructor
parameters...
 Independent deployment:

Everything else is injected
 A way of composition:

Using the Dependency Injection
container

 However: They are fine grained,
let’s look at coarse grained
examples

17 17

Layer

 Each layer may only depend on
layers below it -> better
dependency management
 Typical technical
 Can have a Facade

18 18

Vertical Slices

 Typical business domains
 Example with Vertical Slices and Layers:

© 2010 SpringSource, A division of VMware. All rights reserved © 2010 SpringSource, A division of VMware. All rights reserved

Layers and Slices using
only Spring

20 20

The example again...

21 21

The obvious solution
 Note the additional infrastructure configuration

file (javase.xml)
 Different infrastructure for test / production / etc

easily possible

ApplicationContext applicationContext =	
 new ClassPathXmlApplicationContext(
 new String[] { "tracking-gui.xml", 	
 "tracking-logic.xml", "tracking-persistence.xml",	
 "mtb-configurator-gui.xml",	
 "mtb-configurator-logic.xml",	
 "mtb-configurator-persistence.xml",	
 "mtb-catalog-gui.xml", "mtb-catalog-logic.xml",	
 "mtb-catalog-persistence.xml", "javase.xml" });	

22 22

The other obvious solution

<beans ...>	

<import resource="tracking-gui.xml" />	
<import resource="tracking-logic.xml" />	
<import resource="tracking-persistence.xml" />	
<import resource="mtb-configurator-gui.xml" />	
<import resource="mtb-configurator-logic.xml" />	
<import resource="mtb-configurator-persistence.xml" />	
<import resource="mtb-catalog-gui.xml" />	
<import resource="mtb-catalog-logic.xml" />	
<import resource="mtb-catalog-persistence.xml" />	
<import resource="javase.xml" />	

</beans>	

23 23

Obvious != good
 Each configuration file should be a layer
 But: Each Spring Bean can see each other Spring

Bean...
 ...no matter which layer they are in.

 Also: No explicit dependencies

 There is no interface for a layer – what may you use?
 Solution: Add a Facade as an interface

24 24

Facade: Example
 Configurator Logic: Logic to configure a custom

Mountain Bike, calculate price and delivery date
 Note the Facade and the poor man’s namespace

<beans ...>	
 <bean id="configurator-logic-facade"	
 class="configurator.ConfiguratorFacadeImpl">	
 <property name="deliveryCalculator"	
 ref="configurator-logic-delivery-calculator" />	
 <property name="priceCalculator"	
 ref="configurator-logic-price-calculator" />	
 </bean>	
 <bean id="configurator-logic-delivery-calculator"	
 class="configurator.DeliveryCalculatorImpl" />	
 <bean id="configurator-logic-price-calculator"	
 class="configurator.PriceCalculatorImpl” />	
</beans>	

25 25

Structured (sort of)

26 26

Same done differently
 Each components is a JAR file
 ...with its own build (Maven/ANT) script
 The JAR contains the configuration (and probably a test

configuration) in a well known place

 Use classpath* to merge them:
ApplicationContext applicationContext =  
new ClassPathXmlApplicationContext( 
 "classpath*:/config/appContext.xml");

27 27

Each JAR is a Component

Component! Component! Component!

28 28

What about layers?
 Current situation: Each component

may use each other component
(even in higher layers)

 Layer: Only components in a layer
below may be used.

 Implemented using
ApplicationContext hierarchy

 Popular example:
• ContextLoaderListener’s
ApplicationContext (lower layer)

• DispatcherServlet specific
ApplicationContext (higher layer)

29 29

Layer
ApplicationContext environmentApplicationContext =	
 new ClassPathXmlApplicationContext(
 "javase.xml");	

ApplicationContext persistenceApplicationContext =	
 new ClassPathXmlApplicationContext(
 new String[] { "classpath*:*-persistence.xml" },	
 environmentApplicationContext);	

ApplicationContext logicApplicationContext =	
 new ClassPathXmlApplicationContext(
 new String[] { "classpath*:*-logic.xml" },	
 persistenceApplicationContext);	

ApplicationContext guiApplicationContext =	
 new ClassPathXmlApplicationContext(
 new String[] { "classpath*:*-gui.xml" },	
 logicApplicationContext);	

Logic can see persistence
But not the other way around

30 30

Layer
 Is it worth it?

• We don’t violate layering anyway, do we? ;-)
 And: What about the vertical slices?

• You care about them at least as much as you care about the layers
• Probably more: The are units of functionality i.e. what we are paid for
• Dependency management in this area might be more important

31 31

Vertical Slices
ApplicationContext environmentApplicationContext =	
 new ClassPathXmlApplicationContext("javase.xml");	

ApplicationContext catalogApplicationContext =	
 new ClassPathXmlApplicationContext(
 new String[] { "classpath*:/catalog-*.xml"}, 	
 environmentApplicationContext);	

ApplicationContext configuratorApplicationContext =	
 new ClassPathXmlApplicationContext(
 new String[] { "classpath*:/configurator-*.xml" },	
 catalogApplicationContext);	

ApplicationContext trackingApplicationContext =	
 new ClassPathXmlApplicationContext(
 new String[] { "classpath*:/tracking-*.xml"},	
configuratorApplicationContext);	

32 32

Vertical Slices
 Same approach as for layering
 Dependencies between Vertical Slices are enforced
 But: Now layering is not enforced
 And the infrastructure does not really fit in.

© 2010 SpringSource, A division of VMware. All rights reserved © 2010 SpringSource, A division of VMware. All rights reserved

Components using
Spring Java
Configuration

34 34

Spring Java Configuration

@Configuration	
public class ConfiguratorLogic {	

 @Bean	
 public ConfiguratorFacade configuratorFacade() {	
 ConfiguratorFacadeImpl configuratorFacade =	
 new ConfiguratorFacadeImpl();	
 // some configuration	
 return configuratorFacade; 	
 }	

 @Bean	
 public PriceCalculator priceCalculator() {	
 return new PriceCalculatorImpl();	
 }	

 @Autowired	
 private ModelDAO modelDAO;	
}	

Explicit
Dependency

Just a Factory, but:
with scopes, autowiring, configuration

for properties , ...

Strong typing, IDE support, ...

35 35

Activated with Component Scan

<beans ...>	

 <context:component-scan	
 base-package="de.spring_book.configuration" />	

</beans>	

36 36

Spring Java Configuration: Advantages
 Hierarchical decomposition is easily possible using

Java packages
 Explicit dependencies: Using @Autowired	
 Composition: Using XML and multiple Java

Configuration classes

 Best of all: No XML 

 But no XML namespaces
 Feels less declarative

37 37

Used to solve Visibility Problem

@Configuration	
public class ConfiguratorLogic {	

 @Bean	
 public ConfiguratorFacade configuratorFacade() {	
 ConfiguratorFacadeImpl configuratorFacade =	
 new ConfiguratorFacadeImpl();	
 // some configuration	
 return configuratorFacade; 	
 }	

 @Bean	
 protected PriceCalculator priceCalculator() {	
 return new PriceCalculatorImpl();	
 }	

 @Autowired	
 private ModelDAO modelDAO;	
}	

This feature is gone
Please vote for
http://jira.springframework.org/browse/SPR-7170
to bring it back!

protected:
Not visible
outside this class!

© 2010 SpringSource, A division of VMware. All rights reserved © 2010 SpringSource, A division of VMware. All rights reserved

Components using
Spring Dynamic
Modules for the OSGi™
Platform / SpringSource
Application Platform

39 39

Spring Dynamic Modules 4 OSGi platforms
 OSGi offers bundles
 Bundles = JARs with special headers
 May export services and classes / interfaces
 Services can come and go at runtime
 Spring DM can export Spring Beans as OSGi services

Component!
Interfaces
Services Interfaces

Services

40 40

Components using Spring

 Each component becomes a bundle

 Facade is exported

 Other services can be imported

41 41

Spring DM example

<beans ...>	
 <osgi:service ref="facade"	
 interface="configurator.ConfiguratorFacade" />	

 <bean id="facade"	
 class="configurator.ConfiguratorFacadeImpl">	
 <property name="deliveryCalculator"	
 ref="delivery-calculator" />	
 <property name="priceCalculator"	
 ref="price-calculator" />	
 </bean>	
 <bean id="price-calculator"	
 class="configurator.PriceCalculatorImpl” />	

 <osgi:reference id="modelDao" interface="dao.ModelDAO" />	
</beans>	

Export the Façade as
OSGI service

Import an OSGi service

42 42

Spring DM: Advantages
 Facade is an OSGi Service

• only the Facade and the exported interfaces / classes can be
accessed

 Independent deployment
 Actually the focus of OSGi

 Strong modularization
 Might not be sexy but solves modularity quite nicely

© 2010 SpringSource, A division of VMware. All rights reserved © 2010 SpringSource, A division of VMware. All rights reserved

XML vs. Annotations

44 44

XML vs Annotations?
 Traditional question: Shall I use Annotations (@Service,

@Component) or XML?

 That is actually not the question

 Shall I use code patterns (annotations, packages) or
XML to define Spring Beans?

 …as we will see later on

45 45

Traditional Answer
 XML: structure is defined in one place
 XML is more familiar to most
 Can be used for all code – not just your code
 XML namespaces allow flexible extension
 Java Config is very similar

 Annotations for frequently changing beans
 …but configuration information is distributed
 Only works for your code

46 46

What do we actually configure?

 How many implementation of ModelDAO has the system?
 Quick Type Hierarchy reveals the answer

public class OrderService {	

 private ModelDAO mtbModelDAO;	

 @Required	
 public void setMtbModelDAO(ModelDAO mtbModelDAO) {	
 this.mtbModelDAO = mtbModelDAO;	
 }	
...	
}

© 2010 SpringSource, A division of VMware. All rights reserved © 2010 SpringSource, A division of VMware. All rights reserved

Stating the obvious is
just a waste of time!

48 48

Autowiring to the rescue
 With Autowiring you is obvious configuration not

needed any more
 What do you do if >1 compatible bean exists?

 Bean can be marked as only option
• XML: primary=true
• Annotations: @Primary

 …or as no option
• XML: autowire-candidate=false
• default-autowire-candidates with a name pattern

49 49

Another explanation
 Convention over configuration school

• Ruby on Rails, Grails etc
• Why should I write anything obvious?
• And I have packages etc. to structure

 Traditional Spring school
• I want to configure it explicitly
• …and see the graph in STS etc

 I guess a project will not fail because of this decision.

© 2010 SpringSource, A division of VMware. All rights reserved © 2010 SpringSource, A division of VMware. All rights reserved

Annotations
vs.
Code Structure

51 51

Another dimension...
 So far: Decomposition into

Components
 No focus on code structure
 Also important for architectures
 So what do you do about the code

structure with Spring?

 We can define components
 But: What separates the different

types of layers?
 What services does a layer need?

52 52

AOP: Add behavior
 Add transactions to all DAOs:

 Talks about code structure
 Typically each parts of an architecture needs certain

services (transactions, security, your own service…)
 AOP adds the appropriate services to a components
 Can we use AOP ideas also to define components?

<aop:config>	
 <aop:pointcut id="daoMethods"	
 expression="execution(* dao.*.*(..))"/>	
 <aop:advisor pointcut-ref= "daoMethods"	
 advice-ref="txAdvice"/>	
</aop:config>

53 53

component-scan done differently
 Now every service implementation automatically

becomes a Spring Bean
 May use regular expressions or a superclass / interface

instead
 You still need @Autowired for dependencies

<beans ...>	
 <context:component-scan	
 base-package="com.springsource" >	
 <context:include-filter type="aspectj"	
 expression="com.springsource..service.*Impl"/>	
 </context:component-scan>	
</beans>

54 54

Naming conventions put to life
 You can create Spring Beans just by naming

conventions.
 Spring != XML
 You can add behavior using AOP pointcuts based on

the naming conventions

 Spring annotation can be used to create Spring Beans
 OK – can I also use Spring annotations to define

pointcuts?

55 55

AspectJ Pointcuts for architecture

@Aspect	
public class SystemArchitecture {	

 @Pointcut("call(* (@Service *).*(..))")	
 public void callServiceLayer() {	
 }	

 @Pointcut("call(* (@Repository *).*(..))")	
 public void callDAOLayer() {	
 }	

 @Pointcut("within(@Repository *)")	
 public void inDAOLayer() {	
 }	

}	

56 56

So...

 You can set up your system using package structures
only
 Package structure become meaningful
 You can also define pointcuts for them
• to add Aspects (“log all exceptions in services!”)
• to manage dependencies

 You can also use Spring's annotations to define
pointcuts
 ...and you don’t depend on Spring / AspectJ in the

business code at all

© 2010 SpringSource, A division of VMware. All rights reserved © 2010 SpringSource, A division of VMware. All rights reserved

It is just about how you
want to define the
structure of your
applications!

© 2010 SpringSource, A division of VMware. All rights reserved © 2010 SpringSource, A division of VMware. All rights reserved

Spring XML
Annotations
Packages…

© 2010 SpringSource, A division of VMware. All rights reserved © 2010 SpringSource, A division of VMware. All rights reserved

Sum up

60 60

Sum Up

 Spring offers a lot of flexibility to define architectures
 XML configuration is "default" but other advanced

alternatives are available
 Spring Java Configuration is powerful and interesting
 Spring DM is very powerful and supports deployment

best
 Component scan + pointcuts offer an alternative

approach
 Your choice - decide for yourself!

61 61

 ewolff@vmware.com
 Twitter: @ewolff
 Blog: http://JandIandMe.blogspot.com

