
© 2010 IBM Corporation

Erich Gamma
IBM Distinguished Engineer
IBM Rational Zurich Research Lab

Living Architectures - from eclipse to jazz

Outline

 First assignment

 A tools platform – Eclipse

 Second assignment

 A tools integration platform – Jazz

 Comparison and Conclusion

© 2010 IBM Corporation

First Assignment: Eclipse

 A tools platform

 Seamless integration

 Easy to extend

 Scalable to many extensions

 Java APIs

© 2010 IBM Corporation

Eclipse Architecture Layers: how buildings last

Site

• Stewart Brand: how buildings learn
– what happens after they're built

• stuff: furniture

• services: electrical, plumbing (7-15y)

• structure: foundation, load bearing walls (30-300y)

• site: geographical setting (forever)

• layers:

• evolve at different rates during the life of a building

• shear against each other as they change at different rates

• an adaptive building must allow slippage

 a building that lasts is adaptive and can change over time

© 2010 IBM Corporation

structure foundation

 the eclipse plug-in architecture

 everything is a plug-in

 simple and consistent

© 2010 IBM Corporation

eclipse plug-in architecture

 plug-in == component

 set of contributions

 smallest unit of Eclipse function

 details spelled out in plug-in manifest

 extension point – named entity for collecting

contributions

 extension – a contribution

 Example: a specific spam filter tool

 runtime – controls and manages contributions

plug-in

platform

plug-in

Extension

Extension point

runtime

© 2010 IBM Corporation

scalability

<action

toolbarPath=“search"

icon="icons/opentype.gif“

toolTip=“Open Type”

class="org.eclipse.jdt.OpenTypeAction"/>

org/eclipse/jdt/OpenTypeAction.class

user visible

appearance

contribution

implementation

lazily instantiated using

reflection

© 2010 IBM Corporation

services plumbing: APIs

 Plug-in dependencies through APIs

 But… APIs don’t just happen; we need to design them

 specifications with precisely defined behavior

 what you can assume (and what you cannot)

 it works ≠ API compliant

 documented classes ≠ API

 Must not break existing clients when evolving APIs

© 2010 IBM Corporation

API Stability Techniques

 compatibility layer

 eclipse extension interface support: IAdaptable

 I*2 extensions interfaces

 restart in a new name space/package

© 2010 IBM Corporation

extension interfaces: IAdaptable

 adding interfaces to existing types

 Interface negotiation

<extension point="org.eclipse.core.runtime.adapters">

<factory

class="org.eclipse.jdt.internal.ui.JavaElementAdapterFactory"

adaptableType="org.eclipse.jdt.core.IJavaElement">

<adapter type="org.eclipse.ui.IPersistableElement"/>

…

</factory>

© 2010 IBM Corporation

I*2 extension interfaces

 add new methods in extending API interface with extension interfaces

 avoids breaking existing implementors of an interface

public interface IActionDelegate { … } // original interface

public interface IActionDelegate2 extends IActionDelegate {

void dispose();

}

if (d instanceof IActionDelegate2) {

IActionDelegate2 d2 = (IActionDelegate2) d;

d2.dispose(); // call new method

}

Key Lessons

 APIs are a huge commitment

 the tyranny of stable APIs

 API layers

 I*2… I*7

 Version challenge for product developers

 which API level does our product require and support

 n–1, n-2

 Lockstep version upgrades

Next assignment: A Tools Integration Platform

 Common goal

Rich integration - loose coupling

 New goal

Avoid lockstep version upgrade

 Independent upgrade - customers must be able to upgrade their products one at a time in

the order of their choice

Traditional Tools Integration

Traditional Tools Integration…

 Point-to-point integrations

Limited coverage: there are too many tools to cover

more than a small fraction of possibilities

Tight dependencies between tools require lockstep

upgrades

Proprietary APIs create vendor lock-in

 State of the Art: shared repository

Hard to add existing (legacy) tools

Difficult to evolve tools individually

Limited to a single vendor’s tools or affiliates

Enter “Linked Data”

 Linked Data is an approach, defined by Tim Berners-Lee, to data

integration on the Web

 http://www.w3.org/DesignIssues/LinkedData.html

 Linked data principles

1. Use URIs as names for things.

2. Use HTTP URIs so that people can look up those names.

3. When someone looks up a URI, provide useful information, using the standards

(RDF, SPARQL).

4. Include links to other URIs so that they can discover more things.

http://www.w3.org/DesignIssues/LinkedData.html

Linked Lifecycle Data

Finding and Analyzing Linked Lifecycle Data

From Linked Data to an Integration Toolbox

 UI mash-ups – UI integration

 Provide and consume Open Social gadgets

 Linked data – Data integration

 Open services for life cycle collaboration

 Creating linked data

 Delegated UIs

 Exploring linked data

 UI previews

 Leverage Jazz Foundation integration services

 Utilize Jazz Foundation functional services

D
e

e
p

e
r In

te
g

ra
tio

n

Linked Data is not sufficient – Integration Toolbox

 UI mash-ups

 Provide and consume Open Social gadgets

 Linked data

 Open services for life cycle collaboration

 Creating linked data

 Delegated UIs

 Exploring linked data

 UI previews

 Leverage Jazz Foundation integration services

 Utilize Jazz Foundation functional services

D
e

e
p

e
r In

te
g

ra
tio

n

OpenSocial www.opensocial.org

 OpenSocial defines a common API for social applications across multiple

websites. With standard JavaScript and HTML, developers can create

apps that can embed and be embedded within a social network itself, or

access a social network's data from anywhere on the web.

 We focus on the mash up part

 You can provide new or consume existing gadgets

http://www.opensocial.org/

Open Social Gadgets

Open Social Gadget

Open Social
Gadgets

Work items gadget in Open Social

Containers (iGoogle, gmail)

Linked Data is not sufficient – Integration Toolbox

 UI mash-ups

 Provide and consume Open Social gadgets

 Linked data

 Open Services for Life Cycle collaboration (OSLC)

 Creating linked data

 Delegated UIs

 Exploring linked data

 UI previews

 Leverage Jazz Foundation integration services

 Utilize Jazz Foundation functional services

D
e

e
p

e
r In

te
g

ra
tio

n

Open Services for Lifecycle Collaboration OSLC

 Applies Linked Data principles to Lifecycle artifacts

Provides specifications for sharing lifecycle data

 A minimalist scenario driven approach

 Effort is divided into domains

Change Management

Quality Management

Requirements Management

 Builds on a Common core specification

Open Services for Lifecycle Collaboration
Community specifications for lifecycle integration

Suppose tools exposed their data in a
consistent way?

 Open community of individuals interested
in improving lifecycle integration.

 Goals

1. Make life better for software and product
delivery teams

2. Reduce the complexity and cost for tool
providers in integrating tools together

3. Open up new possibilities in the
marketplace by opening up the way
lifecycle tools and data can be used in
ALM, PLM and outside

 Creating open, public specifications that
describe resources and interfaces for
sharing the things that software and
product delivery teams rely on.

OSLC Core concepts

OSLC Core provides Guidance for

 Resource representations

 must provide an RDF/XML representations of a resource

 may provide JSON, Turtle, ATOM

 Link modeling

 Partial updating of resources

 UI Previews

 Delegated UIs

 Specification versioning

Specification Example: Change Management
http://open-services.net/bin/view/Main/CmSpecificationV2

Retrieving a Defect

Retrieving JSON Representation of a Defect

Linking

 Allow to establish relationships between your resources and resources

provided by others

 Consume resource pickers provided by others

 Support OLSC linking protocols to establish links

 Support resource pickers that can be consumed by others

creation dialog:picker dialog:

Delegated UI Dialogs
For resource creation and selection

Delegated UIs: Embedded Editors

 Using Open Social for composing UIs

UI Preview (was Compact Rendering)

 Allows to show information about linked resources

UI Preview

 GET with
Accept header
application/x-oslc-compact+xml

 Return is an RDF/XML document,
return media type is
application/x-oslc-compact+xml

 http://open-
services.net/bin/view/Main/OslcCoreUiP
review

Service Discovery

1. Discover the existence of the Change
Management system itself, known URL

 E.g. https://rtc:9443/rtc/rootservices

2. Discover the contexts (e.g. projects) in
which change requests may exist, e.g
project

3. Discover the services that are provided
within that context

Discovering the Creation Dialog

Jazz is…

 Our vision of the future of
systems and software
delivery

 A scalable, extensible team
collaboration platform

 An integration architecture
enabling mashups and non-
Jazz products to participate

 A community at Jazz.net
where Jazz products are
built

Jazz is a platform for transforming software delivery

c

Rational
Offerings

Third party
Offerings

Business Partner
Offerings

Jazz is a platform for transforming how people

work together to deliver greater value and

performance from their software investments.

Storage

Collaboration

QueryDiscovery

Administration:
Users, projects,

process

Best Practice Processes

Presentation:
Mashups

Future
IBM

Capabilities

Product
& Project

Management

Collaborative
Lifecycle

Management Engineering
& Software

Tools

Business
Planning &
Alignment

Your
existing

capabilities
3rd-Party

Jazz
Capabilities

Compliance
& Security

Storage

Collaboration

QueryDiscovery

Administration:
Users, projects,

process

Best Practice ProcessesBest Practice Processes

Presentation:
Mashups

Future
IBM

Capabilities

Future
IBM

Capabilities

Product
& Project

Management

Collaborative
Lifecycle

Management Engineering
& Software

Tools

Engineering
& Software

Tools

Business
Planning &
Alignment

Business
Planning &
Alignment

Your
existing

capabilities

Your
existing

capabilities
3rd-Party

Jazz
Capabilities

Compliance
& Security

Test Project

• Test Cases

• Test Plans

• Test Executions

Development Project

• Work items

• Plans

• Streams, Change

Sets

• Builds

Collaborative ALM

Rational

Team Concert

Rational

DOORS Requirements

Professional

Rational

Quality Manager

Requirements project

• Requirements

• Requirements

Collections

Requirements project

• Requirements

• Requirements

Collections

Eclipse vs. Jazz Integration Architecture

 Eclipse

 a tools platform, implement new tools

 Java APIs

 Java

 Integrate by writing new plug-ins

 Plugin.xml

 Factories

 Desktop application

 Fine grained integration

 Independent upgrade difficult

 Jazz integration architecture

 Integrate existing tools

 REST based specifications

Many languages

 Integrate by providing REST implementations

 Service documents

 Discovery, Factory URLs

Web (but can integrate with desktop apps)

 Coarse grained integration

 Supports independent upgrade

IBM Software Group | Rational software

References

OSLC

 www.open-services.net

 Jazz.net

www.jazz.net

