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History

Etorrent - A bittorrent client implemented in Erlang

I Erlang/OTP implementation

I Initial Checkin, 27th Dec 2006

I Had first working version around early 2008

I 5 KSLOCs

Combinatorrent - A bittorrent client in Haskell

I GHC (Glasgow Haskell Compiler) implementation

I Initial checkin: 16th Nov 2009

I First working version less than 2.5 months after

I Implements an actor-like model on top of STM (Software
Transactional Memory)

I 4.1 KSLOCs
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Several reasons:

I “To fully understand a programming language, you must
implement something non-trivial with it.” – Jespers Law

I A priori
I A posteriori

I Gauge the effectiveness of modern functional programming
languages for real-world problems.

I BitTorrent is a good “Problem Set”



Why?

Several reasons:

I “To fully understand a programming language, you must
implement something non-trivial with it.” – Jespers Law

I A priori
I A posteriori

I Gauge the effectiveness of modern functional programming
languages for real-world problems.

I BitTorrent is a good “Problem Set”



Why?

Several reasons:

I “To fully understand a programming language, you must
implement something non-trivial with it.” – Jespers Law

I A priori
I A posteriori

I Gauge the effectiveness of modern functional programming
languages for real-world problems.

I BitTorrent is a good “Problem Set”



Why?

Several reasons:

I “To fully understand a programming language, you must
implement something non-trivial with it.” – Jespers Law

I A priori
I A posteriori

I Gauge the effectiveness of modern functional programming
languages for real-world problems.

I BitTorrent is a good “Problem Set”



KSLOCs

wgo combinatorrent etorrent bittornado rtorrent ktorrent transmission deluge

0
20

00
0

40
00

0
60

00
0

80
00

0



KSLOCs

wgo combinatorrent bittornado rtorrent ktorrent transmission deluge Vuze

0e
+

00
1e

+
05

2e
+

05
3e

+
05

4e
+

05



HTTP vs BitTorrent

BitTorrent is about Content distribution. Some key differences:

HTTP

I Simple

I Stateless

I One-to-many

I “Serial”

I Upstream bandwidth
heavy

BitTorrent

I Complex

I Stateful

I Peer-2-Peer

I “Concurrent”

I Upstream bandwidth
scales proportionally
with number of
consumers

In BitTorrent everything is sacrificed for the last point.



Key concepts

One: A stream of bytes is split into pieces and exchanged among
peers with a message-passing protocol.



Two: Swarm intelligence

Beehives, Ant colonies, wasps.

Each client acts independently with a 10 second memory, only
evaluates downstream bandwidth; unless it is seeding.

Mantra: Be friendly to your established friends, but be optimistic
about gaining new ones
Mimics human interaction.
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I Cheap processes (green, userland based)

I Fast CTX switch

I Process Isolation, message pass is persistent or a copy
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Communication (Link)
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Process Hierarchy (Location)

S0

S1 Main Timer Console PeerMgr ChokeMgr

S2 FS Tracker Status PieceMgr

SPeer1 SPeer2

P1Receiver P1SendQ P1PeerP P1Sender P2Receiver P2SendQ P2PeerP P2Sender



Bigraphs

Bigraph = Hypergraph + Tree

Do not confuse with bipartite graphs.

Hypergraph is the link-graph
Tree is the location-graph



Robustness

Robustness is key to good programming:

I Semantics (segfault, Null, of-by-one, ...)

I Proactive: Haskell
I Type system

I Reactive: Erlang
I Crashes, restarts
I Supervisors
I Redundancy

Ideas from both areas are needed in robust software!
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Strings in Haskell and Erlang

I Single linked lists of runes

I Simple

I Unicode is trivial

I List operations are string operations

I It is fairly fast

I Extremely memory heavy (16+ bytes per char in Erlang!)

Solution: Use ByteString for binary data in Haskell, binaries/iolists
in Erlang.
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Some cool things in Haskell

I Haskell is king of abstraction (sans Proof assistants)

I Type system is expressive almost to the point of program proof

I Strong Type Zoo

I Combinators run at full speed in Haskell

I Close to being clay: you can model actors easily

I Excellent community - vibrant; practitioners and academics.

I QuickCheck - (John Hughes, Wednesday)
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The bad in Haskell

I Lazy evaluation - space leaks

I Heap Profile – Use strictness annotations,

I Peak Mem:

I Productivity:

I CPU/Mb:

I Academic compilers, stability suffer

I Some libraries are extremely complex type-wise
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Some cool things in Erlang

I Crash-oriented programming is bliss, an error might not be
fatal

I OTP - Actor abstraction: Servers, event drivers, finite state
machine, supervision, logging, ...

I Processes are individually garbage collected (isolation)

I Interpreted language, but implementation is heavily optimized

I Again, excellent community!
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I Not suited for number crunching (have to choose right
algorithm, data structure)

I No way to do imperative code (Deliberate choice by the
Erlang developers, have to fake it)

I Dynamic typing (Dialyzer project helps, processes are small
(< 500 lines)
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The Ugly

Haskell:

I Take laziness seriously from the start

I Be careful when choosing libraries

Erlang:

I Be careful about messaging large data between processes

I Mnesia has optimistic conflict resolution

Both: Expect to manipulate your process model quite a bit.
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Repositories

We use github for all code:

http://www.github.com/jlouis

Look for etorrent and combinatorrent

http://www.github.com/jlouis
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