
Battlefield report: Bittorrent protocol
implementation

Analysis of using Erlang and Haskell

Jesper Louis Andersen
jesper.louis.andersen@gmail.com

Sep 27, 2010



Overview

Goal: Tell a story. Give insight.

Priming: What is it, really?

Actors! You have hundreds of independent processes ...

War diary: Musings over the implementations.



Overview

Goal: Tell a story. Give insight.

Priming: What is it, really?

Actors! You have hundreds of independent processes ...

War diary: Musings over the implementations.



Overview

Goal: Tell a story. Give insight.

Priming: What is it, really?

Actors! You have hundreds of independent processes ...

War diary: Musings over the implementations.



Overview

Goal: Tell a story. Give insight.

Priming: What is it, really?

Actors! You have hundreds of independent processes ...

War diary: Musings over the implementations.



History

Etorrent - A bittorrent client implemented in Erlang

I Erlang/OTP implementation

I Initial Checkin, 27th Dec 2006

I Had first working version around early 2008

I 5 KSLOCs

Combinatorrent - A bittorrent client in Haskell

I GHC (Glasgow Haskell Compiler) implementation

I Initial checkin: 16th Nov 2009

I First working version less than 2.5 months after

I Implements an actor-like model on top of STM (Software
Transactional Memory)

I 4.1 KSLOCs



Ackowledgements

This is joint work; try to make it easy to contribute:

Etorrent: Tuncer Ayaz, Magnus Klaar

Combinatorrent: Alex Mason, Andrea Vezzozi, “Astro”, Ben
Edwards, John Gunderman, Roman Cheplyaka, Thomas
Christensen



Why?

Several reasons:

I “To fully understand a programming language, you must
implement something non-trivial with it.” – Jespers Law

I A priori
I A posteriori

I Gauge the effectiveness of modern functional programming
languages for real-world problems.

I BitTorrent is a good “Problem Set”



Why?

Several reasons:

I “To fully understand a programming language, you must
implement something non-trivial with it.” – Jespers Law

I A priori
I A posteriori

I Gauge the effectiveness of modern functional programming
languages for real-world problems.

I BitTorrent is a good “Problem Set”



Why?

Several reasons:

I “To fully understand a programming language, you must
implement something non-trivial with it.” – Jespers Law

I A priori
I A posteriori

I Gauge the effectiveness of modern functional programming
languages for real-world problems.

I BitTorrent is a good “Problem Set”



Why?

Several reasons:

I “To fully understand a programming language, you must
implement something non-trivial with it.” – Jespers Law

I A priori
I A posteriori

I Gauge the effectiveness of modern functional programming
languages for real-world problems.

I BitTorrent is a good “Problem Set”



KSLOCs

wgo combinatorrent etorrent bittornado rtorrent ktorrent transmission deluge

0
20

00
0

40
00

0
60

00
0

80
00

0



KSLOCs

wgo combinatorrent bittornado rtorrent ktorrent transmission deluge Vuze

0e
+

00
1e

+
05

2e
+

05
3e

+
05

4e
+

05



HTTP vs BitTorrent

BitTorrent is about Content distribution. Some key differences:

HTTP

I Simple

I Stateless

I One-to-many

I “Serial”

I Upstream bandwidth
heavy

BitTorrent

I Complex

I Stateful

I Peer-2-Peer

I “Concurrent”

I Upstream bandwidth
scales proportionally
with number of
consumers

In BitTorrent everything is sacrificed for the last point.



Key concepts

One: A stream of bytes is split into pieces and exchanged among
peers with a message-passing protocol.



Two: Swarm intelligence

Beehives, Ant colonies, wasps.

Each client acts independently with a 10 second memory, only
evaluates downstream bandwidth; unless it is seeding.

Mantra: Be friendly to your established friends, but be optimistic
about gaining new ones
Mimics human interaction.



Two: Swarm intelligence

Beehives, Ant colonies, wasps.

Each client acts independently with a 10 second memory, only
evaluates downstream bandwidth; unless it is seeding.

Mantra: Be friendly to your established friends, but be optimistic
about gaining new ones
Mimics human interaction.



Actor models

“Island model”

I Cheap processes (green, userland based)

I Fast CTX switch

I Process Isolation, message pass is persistent or a copy



Actor models

“Island model”

I Cheap processes (green, userland based)

I Fast CTX switch

I Process Isolation, message pass is persistent or a copy



Communication (Link)

Peer #1 Peer #2

P1

Socket

P2 P3

Tracker

PeerMgr ChokeMgr

Status

PeerP

Peer SendQueue

Peer_Receiver

Peer Sender

PeerP

Peer SendQueue

Peer_Receiver

Peer Sender

Main

FSConsole

Timer

PieceMgr

Listener

HTTP



Process Hierarchy (Location)

S0

S1 Main Timer Console PeerMgr ChokeMgr

S2 FS Tracker Status PieceMgr

SPeer1 SPeer2

P1Receiver P1SendQ P1PeerP P1Sender P2Receiver P2SendQ P2PeerP P2Sender



Bigraphs

Bigraph = Hypergraph + Tree

Do not confuse with bipartite graphs.

Hypergraph is the link-graph
Tree is the location-graph



Robustness

Robustness is key to good programming:

I Semantics (segfault, Null, of-by-one, ...)

I Proactive: Haskell
I Type system

I Reactive: Erlang
I Crashes, restarts
I Supervisors
I Redundancy

Ideas from both areas are needed in robust software!



Process Hierarchy (Location)

S0

S1 Main Timer Console PeerMgr ChokeMgr

S2 FS Tracker Status PieceMgr

SPeer1 SPeer2

P1Receiver P1SendQ P1PeerP P1Sender P2Receiver P2SendQ P2PeerP P2Sender



Strings in Haskell and Erlang

I Single linked lists of runes

I Simple

I Unicode is trivial

I List operations are string operations

I It is fairly fast

I Extremely memory heavy (16+ bytes per char in Erlang!)

Solution: Use ByteString for binary data in Haskell, binaries/iolists
in Erlang.



Strings in Haskell and Erlang

I Single linked lists of runes

I Simple

I Unicode is trivial

I List operations are string operations

I It is fairly fast

I Extremely memory heavy (16+ bytes per char in Erlang!)

Solution: Use ByteString for binary data in Haskell, binaries/iolists
in Erlang.



Strings in Haskell and Erlang

I Single linked lists of runes

I Simple

I Unicode is trivial

I List operations are string operations

I It is fairly fast

I Extremely memory heavy (16+ bytes per char in Erlang!)

Solution: Use ByteString for binary data in Haskell, binaries/iolists
in Erlang.



Strings in Haskell and Erlang

I Single linked lists of runes

I Simple

I Unicode is trivial

I List operations are string operations

I It is fairly fast

I Extremely memory heavy (16+ bytes per char in Erlang!)

Solution: Use ByteString for binary data in Haskell, binaries/iolists
in Erlang.



Some cool things in Haskell

I Haskell is king of abstraction (sans Proof assistants)

I Type system is expressive almost to the point of program proof

I Strong Type Zoo

I Combinators run at full speed in Haskell

I Close to being clay: you can model actors easily

I Excellent community - vibrant; practitioners and academics.

I QuickCheck - (John Hughes, Wednesday)



Some cool things in Haskell

I Haskell is king of abstraction (sans Proof assistants)

I Type system is expressive almost to the point of program proof

I Strong Type Zoo

I Combinators run at full speed in Haskell

I Close to being clay: you can model actors easily

I Excellent community - vibrant; practitioners and academics.

I QuickCheck - (John Hughes, Wednesday)



Some cool things in Haskell

I Haskell is king of abstraction (sans Proof assistants)

I Type system is expressive almost to the point of program proof

I Strong Type Zoo

I Combinators run at full speed in Haskell

I Close to being clay: you can model actors easily

I Excellent community - vibrant; practitioners and academics.

I QuickCheck - (John Hughes, Wednesday)



Some cool things in Haskell

I Haskell is king of abstraction (sans Proof assistants)

I Type system is expressive almost to the point of program proof

I Strong Type Zoo

I Combinators run at full speed in Haskell

I Close to being clay: you can model actors easily

I Excellent community - vibrant; practitioners and academics.

I QuickCheck - (John Hughes, Wednesday)



The bad in Haskell

I Lazy evaluation - space leaks

I Heap Profile – Use strictness annotations,

I Peak Mem:

I Productivity:

I CPU/Mb:

I Academic compilers, stability suffer

I Some libraries are extremely complex type-wise



The bad in Haskell

I Lazy evaluation - space leaks
I Heap Profile – Use strictness annotations,

I Peak Mem:

I Productivity:

I CPU/Mb:

I Academic compilers, stability suffer

I Some libraries are extremely complex type-wise



The bad in Haskell

I Lazy evaluation - space leaks
I Heap Profile – Use strictness annotations,

I Peak Mem:

I Productivity:

I CPU/Mb:

I Academic compilers, stability suffer

I Some libraries are extremely complex type-wise



The bad in Haskell

I Lazy evaluation - space leaks
I Heap Profile – Use strictness annotations,

I Peak Mem:

I Productivity:

I CPU/Mb:

I Academic compilers, stability suffer

I Some libraries are extremely complex type-wise



Some cool things in Erlang

I Crash-oriented programming is bliss, an error might not be
fatal

I OTP - Actor abstraction: Servers, event drivers, finite state
machine, supervision, logging, ...

I Processes are individually garbage collected (isolation)

I Interpreted language, but implementation is heavily optimized

I Again, excellent community!



Some cool things in Erlang

I Crash-oriented programming is bliss, an error might not be
fatal

I OTP - Actor abstraction: Servers, event drivers, finite state
machine, supervision, logging, ...

I Processes are individually garbage collected (isolation)

I Interpreted language, but implementation is heavily optimized

I Again, excellent community!



Some cool things in Erlang

I Crash-oriented programming is bliss, an error might not be
fatal

I OTP - Actor abstraction: Servers, event drivers, finite state
machine, supervision, logging, ...

I Processes are individually garbage collected (isolation)

I Interpreted language, but implementation is heavily optimized

I Again, excellent community!



Some cool things in Erlang

I Crash-oriented programming is bliss, an error might not be
fatal

I OTP - Actor abstraction: Servers, event drivers, finite state
machine, supervision, logging, ...

I Processes are individually garbage collected (isolation)

I Interpreted language, but implementation is heavily optimized

I Again, excellent community!



Some cool things in Erlang

I Crash-oriented programming is bliss, an error might not be
fatal

I OTP - Actor abstraction: Servers, event drivers, finite state
machine, supervision, logging, ...

I Processes are individually garbage collected (isolation)

I Interpreted language, but implementation is heavily optimized

I Again, excellent community!



The bad in Erlang

I Not suited for number crunching (have to choose right
algorithm, data structure)

I No way to do imperative code (Deliberate choice by the
Erlang developers, have to fake it)

I Dynamic typing (Dialyzer project helps, processes are small
(< 500 lines)



The bad in Erlang

I Not suited for number crunching (have to choose right
algorithm, data structure)

I No way to do imperative code (Deliberate choice by the
Erlang developers, have to fake it)

I Dynamic typing (Dialyzer project helps, processes are small
(< 500 lines)



The bad in Erlang

I Not suited for number crunching (have to choose right
algorithm, data structure)

I No way to do imperative code (Deliberate choice by the
Erlang developers, have to fake it)

I Dynamic typing (Dialyzer project helps, processes are small
(< 500 lines)



The Ugly

Haskell:

I Take laziness seriously from the start

I Be careful when choosing libraries

Erlang:

I Be careful about messaging large data between processes

I Mnesia has optimistic conflict resolution

Both: Expect to manipulate your process model quite a bit.



The Ugly

Haskell:

I Take laziness seriously from the start

I Be careful when choosing libraries

Erlang:

I Be careful about messaging large data between processes

I Mnesia has optimistic conflict resolution

Both: Expect to manipulate your process model quite a bit.



The Ugly

Haskell:

I Take laziness seriously from the start

I Be careful when choosing libraries

Erlang:

I Be careful about messaging large data between processes

I Mnesia has optimistic conflict resolution

Both: Expect to manipulate your process model quite a bit.



Repositories

We use github for all code:

http://www.github.com/jlouis

Look for etorrent and combinatorrent

http://www.github.com/jlouis

	Actors
	Story

