Battlefield report: Bittorrent protocol
implementation
Analysis of using Erlang and Haskell

Jesper Louis Andersen
jesper.louis.andersen@gmail.com

Sep 27, 2010

Overview

Goal: Tell a story. Give insight.

Overview

Goal: Tell a story. Give insight.
Priming: What is it, really?

Overview

Goal: Tell a story. Give insight.
Priming: What is it, really?

Actors! You have hundreds of independent processes ...

Overview

Goal: Tell a story. Give insight.
Priming: What is it, really?
Actors! You have hundreds of independent processes ...

War diary: Musings over the implementations.

History

Etorrent - A bittorrent client implemented in Erlang
» Erlang/OTP implementation
> Initial Checkin, 27th Dec 2006
» Had first working version around early 2008
» 5 KSLOCGCs

Combinatorrent - A bittorrent client in Haskell
» GHC (Glasgow Haskell Compiler) implementation
> Initial checkin: 16th Nov 2009
> First working version less than 2.5 months after

» Implements an actor-like model on top of STM (Software
Transactional Memory)

» 4.1 KSLOCs

Ackowledgements

This is joint work; try to make it easy to contribute:
Etorrent: Tuncer Ayaz, Magnus Klaar
Combinatorrent: Alex Mason, Andrea Vezzozi, “Astro”, Ben

Edwards, John Gunderman, Roman Cheplyaka, Thomas
Christensen

Why?

Several reasons:

Why?

Several reasons:

» “To fully understand a programming language, you must
implement something non-trivial with it.” — Jespers Law
> A priori
» A posteriori

Why?

Several reasons:

» “To fully understand a programming language, you must
implement something non-trivial with it.” — Jespers Law

> A priori
» A posteriori
> Gauge the effectiveness of modern functional programming
languages for real-world problems.

Why?

Several reasons:

» “To fully understand a programming language, you must
implement something non-trivial with it.” — Jespers Law

> A priori
» A posteriori

> Gauge the effectiveness of modern functional programming
languages for real-world problems.

» BitTorrent is a good “Problem Set”

KSLOCs

o —--.IIII

wgo combinatorrent etorrent bittornado rtorrent ktorrent transmission deluge

40000 60000 80000
1 1

20000
1

KSLOCs

2e+05 3e+05 4e+05
| |]

1e+05
|

wgo combinatorrent bittornado rtorrent ktorrent transmission deluge Vuze

0e+00

HTTP vs BitTorrent

BitTorrent is about Content distribution. Some key differences:

HTTP

>

>

>

Simple
Stateless
One-to-many
“Serial”

Upstream bandwidth
heavy

BitTorrent

>

>

>

Complex
Stateful
Peer-2-Peer
“Concurrent”

Upstream bandwidth
scales proportionally
with number of
consumers

In BitTorrent everything is sacrificed for the last point.

Key concepts

One: A stream of bytes is split into pieces and exchanged among
peers with a message-passing protocol.

Two: Swarm intelligence

Beehives, Ant colonies, wasps.

Two: Swarm intelligence

Beehives, Ant colonies, wasps.

Each client acts independently with a 10 second memory, only
evaluates downstream bandwidth; unless it is seeding.

Mantra: Be friendly to your established friends, but be optimistic
about gaining new ones
Mimics human interaction.

Actor models

“Island model”

Actor models

“Island model”

» Cheap processes (green, userland based)
> Fast CTX switch

» Process Isolation, message pass is persistent or a copy

Communication (Link)

%

/0

Peer #1

Peer #2

‘ Listener

‘ Peer_Receiver

‘ Peer_Receiver

(e

‘ Peer SendQueue

|

‘ Peer SendQueue I

‘ Peer Sender

‘ Peer Sender

Process Hierarchy (Location)

ChokeMgr

P1Receiver ‘ P1SendQ ‘ ‘ P1PeerP

‘ P1Sender

‘ P2Receiver P2Sender

P2SendQ ‘ ‘ P2PeerP

Bigraphs

Bigraph = Hypergraph 4 Tree

Do not confuse with bipartite graphs.

Hypergraph is the link-graph
Tree is the location-graph

Robustness

Robustness is key to good programming:

» Semantics (segfault, Null, of-by-one, ...)

» Proactive: Haskell
» Type system
» Reactive: Erlang

» Crashes, restarts
» Supervisors
» Redundancy

Ideas from both areas are needed in robust software!

Process Hierarchy (Location)

ChokeMgr

P1Receiver ‘ P1SendQ ‘ ‘ P1PeerP

‘ P1Sender

‘ P2Receiver P2Sender

P2SendQ ‘ ‘ P2PeerP

Strings in Haskell and Erlang

> Single linked lists of runes

Strings in Haskell and Erlang

> Single linked lists of runes
» Simple
» Unicode is trivial

v

List operations are string operations

Strings in Haskell and Erlang

> Single linked lists of runes
» Simple
» Unicode is trivial

v

List operations are string operations

v

It is fairly fast

v

Extremely memory heavy (164 bytes per char in Erlang!)

Strings in Haskell and Erlang

> Single linked lists of runes
» Simple
» Unicode is trivial

v

List operations are string operations

v

It is fairly fast

v

Extremely memory heavy (164 bytes per char in Erlang!)

Solution: Use ByteString for binary data in Haskell, binaries/iolists
in Erlang.

Some cool things in Haskell

» Haskell is king of abstraction (sans Proof assistants)
» Type system is expressive almost to the point of program proof

» Strong Type Zoo

Some cool things in Haskell

v

Haskell is king of abstraction (sans Proof assistants)

v

Type system is expressive almost to the point of program proof

v

Strong Type Zoo

v

Combinators run at full speed in Haskell

Some cool things in Haskell

v

Haskell is king of abstraction (sans Proof assistants)

v

Type system is expressive almost to the point of program proof

v

Strong Type Zoo

v

Combinators run at full speed in Haskell

v

Close to being clay: you can model actors easily

Some cool things in Haskell

v

Haskell is king of abstraction (sans Proof assistants)

v

Type system is expressive almost to the point of program proof

v

Strong Type Zoo

v

Combinators run at full speed in Haskell

v

Close to being clay: you can model actors easily

v

Excellent community - vibrant; practitioners and academics.
QuickCheck - (John Hughes, Wednesday)

v

The bad in Haskell

> Lazy evaluation - space leaks

The bad in Haskell

> Lazy evaluation - space leaks
» Heap Profile — Use strictness annotations,

The bad in Haskell

> Lazy evaluation - space leaks
Heap Profile — Use strictness annotations,
Peak Mem:

W\/‘/»w\w.,\fw #
Productivity:

v

v

1
\~ 08573
A o460

v

0.9573
005938

CPU/Mb: -1t

v

The bad in Haskell

> Lazy evaluation - space leaks
» Heap Profile — Use strictness annotations,

AW VY o M
» Peak Mem: Vip |
[vy A N 073
» Productivity: e ories
g oosean

» CPU/Mb: o
» Academic compilers, stability suffer
» Some libraries are extremely complex type-wise

Some cool things in Erlang

» Crash-oriented programming is bliss, an error might not be
fatal

Some cool things in Erlang

» Crash-oriented programming is bliss, an error might not be
fatal

» OTP - Actor abstraction: Servers, event drivers, finite state
machine, supervision, logging, ...

Some cool things in Erlang

» Crash-oriented programming is bliss, an error might not be
fatal

» OTP - Actor abstraction: Servers, event drivers, finite state
machine, supervision, logging, ...

» Processes are individually garbage collected (isolation)

Some cool things in Erlang

v

Crash-oriented programming is bliss, an error might not be
fatal

v

OTP - Actor abstraction: Servers, event drivers, finite state
machine, supervision, logging, ...

v

Processes are individually garbage collected (isolation)

v

Interpreted language, but implementation is heavily optimized

Some cool things in Erlang

» Crash-oriented programming is bliss, an error might not be
fatal

» OTP - Actor abstraction: Servers, event drivers, finite state
machine, supervision, logging, ...

» Processes are individually garbage collected (isolation)
> Interpreted language, but implementation is heavily optimized

> Again, excellent community!

The bad in Erlang

» Not suited for number crunching (have to choose right
algorithm, data structure)

The bad in Erlang

» Not suited for number crunching (have to choose right
algorithm, data structure)

» No way to do imperative code (Deliberate choice by the
Erlang developers, have to fake it)

The bad in Erlang

» Not suited for number crunching (have to choose right
algorithm, data structure)

» No way to do imperative code (Deliberate choice by the
Erlang developers, have to fake it)

» Dynamic typing (Dialyzer project helps, processes are small
(< 500 lines)

The Ugly

Haskell:
» Take laziness seriously from the start

» Be careful when choosing libraries

The Ugly

Haskell:
» Take laziness seriously from the start

» Be careful when choosing libraries

Erlang:
» Be careful about messaging large data between processes

» Mnesia has optimistic conflict resolution

The Ugly

Haskell:
» Take laziness seriously from the start

» Be careful when choosing libraries

Erlang:
» Be careful about messaging large data between processes

» Mnesia has optimistic conflict resolution

Both: Expect to manipulate your process model quite a bit.

Repositories

We use github for all code:

http://wuw.github.com/jlouis

Look for etorrent and combinatorrent

http://www.github.com/jlouis

	Actors
	Story

