JAUU

Smart Software with F

INJ NET

Joel Pobar
http://callvirt.net/blog

Agenda

 Why Functional Programming?
* F# Language Walkthrough

* Smart Software Ideas
— Search
— Fuzzy Matching
— Classification
— Recommendations

...a functional, object-oriented, imperative and
explorative programming language for .NET

what is Functional Programming?

What is FP?

Wikipedia: “A programming paradigm that treats
computation as the evaluation of mathematical
functions and avoids state and mutable data”

-> Emphasizes functions

-> Emphasizes shapes of data, rather than impl.
-> Modeled on lambda calculus

-> Reduced emphasis on imperative

-> Safely raises level of abstraction

Movation

e Simplicity in life is good: cheaper, faster,
better.
— We typically achieve simplicity by:
* By raising the level of abstraction

* Increasing modularity
* Increasing expressiveness (signal to noise)

 Composition and modularity == reuse

 Environment is changing: safety, concurrency,
non-deterministic, non-sequential

Composition, Modularity

Why Functional Programming Matters

John Hughes, Institutionen for Datavetenskap.
Chalmers Tekniska Hogskola.,
41296 Goteborg,
SWEDEN. rjmh@cs.chalmers.se

Abstract

As software becomes more and more complex, it is more and more
important to structure it well. Well-structured software is easy to write,
easy to debug, and provides a collection of modules that can be re-used
to reduce future programming costs. Conventional languages place con-
ceptual limits on the wav nroblems can be modularised. Functional lan-
guages push those limits back. In this paper we show that two features of
functional languages in particular, higher-order functions and lazv eval-
uation. can contribute greatly to modularitv. As examples, we manipu-

Composition, Modularity

* Reg Braithwaite: “Let’s ask a question about
Monopoly (and Enterprise Software). Where
do the rules live? In a noun-oriented design,
the rules are smooshed and smeared across
the design, because every single object is
responsible for knowing everything about
everything it can ‘do’. All the verbs are glued
to the nouns as methods.”

Composition, Modularity

 “The great insight is that better programs
separate concerns. They are factored more
purely, and the factors are naturally along the
lines of responsibility (rather than in Jenga
piles of abstract virtual base mixin module
class proto extends private implements).
Languages that facilitate better separation of
concerns are more powerful in practice than
those that don’t.”

Changing Environment

Multi-core

— Moore’s law still strong, the old “clock frequency” corollary
isn’t...

Distributed computing

— The cloud is the next big thing

— Millisecond computations

— Async

— Local vs. Remote computation (mobile devices)

Massive data

DSL’s: raising abstraction for consumers of software

Risk!

— Big budgets, small timeframes, and reliability as first class!

Safe and Useful

[Unsafe [Safe]

Agenda

 Why Functional Programming?
* F# Language Walkthrough

* Smart Software Ideas
— Recommendations
— Fuzzy Matching
— Search
— Classification

F# Overview

F# is a .NET language

Vs

F# is a multi-paradigm language

.

F# is a statically-typed language

\.

-

F# is a feature-rich language

N

F# Overview

[F# is a .NET language

* Runs on any CLI implementation (including Mono!)
* Consumes any .NET library
* Interoperates with any .NET language

[F# is a multi-paradigm language

F# is a statically-typed language

[F# is a feature-rich language

F# Overview

LF# is a .NET language

F# is a multi-paradigm language

* Embraces functional, imperative and OO paradigms
* Encourages a functional programming style

F# is a statically-typed language

[F# is a feature-rich language

F# Overview

F# is a .NET language

-

F# is a multi-paradigm language

.

F# is a statically-typed language

* RICH type inference
* Expect to see very few type annotations
* NOT a dynamically-typed language

[F# is a feature-rich language

F# Overview

LF# is a .NET language

F# is a multi-paradigm language

F# is a statically-typed language

[F# is a feature-rich language

* Broad, rich type system

Control computation semantics

Hack on the compiler AST

Read-Eval-Print-Loop (REPL) & scripting support

ML style functional programming library (FSharp.Core.dll)

F# Syntax

let

let
let
let
let

let hello = “Hello World”

Type inferred

numbers = [1 .. 10]

odds = [1; 3; 5; 7; 9]

evens = [0 .. 2 .. 10]

squares = [for x in numbers -> x * x]
let 3 19 _ Immutable by default

let a = 20 // error

Functions

fun

Type inferred

let square x = x * X
let add Xy = X +y

let squares = List.map (fun x -> x * x) [1..10]

N4

let squares = List.map square [1..10]

Functions

Space is important — 4
spaces gives you scope

let 'appendFile (fileName: string) (text: string) =
use file = new StreamWriter(fileName, true)
file.WritelLine(text)
file.Close()

val appendFile : string -> string -> unit

Function signature says: “The first parameter is a
string, and the result is a function which takes a
string and returns unit”. Enables a powerful feature
called “currying”

Tuple

()

> let dinner = (“eggs”, “ham”)

val dinner: string * string = (“eggs”, “ham”)

> let entree, main = dinner

> let zeros = (0, 0L, 0I, 0.0)

val zeros: int * inte4 * bigint * float = ...

Lists

[5]

let vowels = [‘a’; ‘e’; ‘i’; ‘o’; ‘u’]
let emptylList = []

let sometimes = ‘y’ :: vowels // cons
let others = [‘Z2°; ‘X’;] @ vowels // append

List.
List.
.tail
List.
List.
.tryFind

List

List

List.

List.

length
head

exists
rev

filter

partition

Lists

‘a list -> int

‘a list -> ‘a

‘a list -> ‘a

(‘a -> bool) -> ‘a
‘a list -> ‘a list
(‘a -> bool) -> ‘a
option

(‘a -> bool) -> ‘a
list

(‘a -> bool) -> ‘a
list * “a list)

list

list

list

list

->

->

->

->

List.iter
(‘a -»>
List.map
(‘a ->
List.reduce
(‘a ->
List.fold
(‘a ->

Lists

unit) -> ‘a list -> unit
‘b) -> “a list -> ‘b 1list
‘a -> ‘a) -> ‘a list -> ‘a

‘b -> ‘a) -> ‘a -> ‘b list

->

‘a

Sequences

seq {}

let seqOfNumbers = seq { 1 .. 10000000 }
let alpha = seq { for ¢ in ‘A’ .. ‘2’ -> c }

let rec allFilesUnder basePath =
seq {
yield! Directory.GetFiles(basePath)
for subDir in
Directory.GetDirectories(basePath) do
yield! allFilesUnder subDir

¥

F# Syntax

>

let sumOfSquares =
List.sum (List.map square [1..10])

v

let (|>) x f = f x

Vv

let sumOfSquares = [1..10]
> List.map square
> List.sum

Types

type
type Suit = | Spade | Heart | Club | Diamond
type Rank = | Ace | King | Queen | Jack

| Value of int

type Card = Card of Suit * Rank

Types

type

type Person =
{ First: string; Last: string; Age: int}

let b = {First = “Bill”; Last = “Gates”; Age =
54}

printfn “%s is %d years old” b.First b.Age

Types

type

type Point =
val m_x : float
val m y : float

new (x, y) = { m_
new () = { m_ x =
member this.Length =

let sgr x = x * X

sgrt <| sqgr this.m x + sgr this.m y

Types

interface

type IWriteScreen =
abstract member Print : string -> unit

type SomeClass =
interface IWriteScreen with
member this.Print (str: string) =
Console.WritelLine(str)

F# Syntax

match

let cardValue (Card(r,s)) =
match r with

Ace -> 11
King | Queen | Jack -> 10
Value(x) -> X

let oddOrEven x =
match x with

| x when x % 2 =0 -> "even"
| B N "Odd"

Demo: Quick Lap around F

Agenda

 Why Functional Programming?
* F# Language Walkthrough

* Smart Software ldeas
— Recommendations
— Fuzzy Matching
— Search
— Classification

Recommendation Engine

Netflix Prize - S1 million USD
— Must beat Netflix prediction algorithm by 10%
— 480k users

— 100 million ratings
— 18,000 movies

Great example of deriving value out of large datasets
Earns Netflix loads and loads of SSS!

Unfortunately no longer running:
— Instead we’ll be using the Movielens dataset

MovielLens Data Format

Movield | Customerid

Clerks 444444 5.0
Clerks 2093393 4.5
Clerks 999 5.0
Clerks 8668478 1.0
Dogma 2432114 3.0
Dogma 444444 5.0

Dogma 999 5.0

Nearest Neighbour

Movield | Customerid

Clerks 444444 5.0
Clerks 2093393 4.0
Clerks 999 5.0
Clerks 8668478 1.0
Dogma 2432114 3.0
Dogma 444444 5.0

Dogma 999 5.0

Recommendation Engine

* Find the best movies my neighbours agree on:

Customerld 302 4418 3 56

444444 5 4 5 2
999 5 5 1
111211 3 5 3
66666 5 5

1212121 5 4

5656565 1
454545 5 5

Demo: Recommendation Engine

Nearest Neighbour: Vector Math

O A(x1y1)

O B(x2,y2)

C(x0,y0) ©

If we want to calculate the distance between A and B, we call on Euclidean Distance
We can represent the points in the same way using Vectors: Magnitude and Direction.

Having this Vector representation, allows us to work in ‘n” dimensions, yet still achieve
Euclidean Distance/Angle calculations.

Agenda

 Why Functional Programming?
* F# Language Walkthrough

* Smart Software ldeas
— Recommendations
— Fuzzy Matching
— Search
— Classification

Fuzzy Matching

e String similarity algorithms:
— SoundEx; Metaphone

— Jaro Winkler Distance; Cosine similarity; Sellers;
Euclidean distance; ...

— We'll look at Levenshtein Distance algorithm

* Defined as: The minimum edit operations
which transforms string1 into string2

Fuzzy Matching

* Edit costs:
— In-place copy — cost O
— Delete a character in stringl — cost 1
— Insert a character in string2 — cost 1
— Substitute a character for another —cost 1
* Transform ‘kitten’ in to ‘sitting’
— kitten -> sitten (cost 1 — replace k with s)
— sitten -> sittin (cost 1 - replace e with i)
— sittin -> sitting (cost 1 — add g)
* Levenshtein distance: 3

Fuzzy Matching

e Estimated string similarity computation costs:

— Hard on the GC (lots of temporary strings created
and thrown away, use arrays if possible.

— Levenshtein can be computed in O (kl) time,
where ‘I’ is the length of the shortest string, and
‘k” is the maximum distance.

— Parallelisable — split the set of words to compare
across n cores.

— Can do approximately 10,000 compares per
second on a standard single core laptop.

Fuzzy Matching Demo

o R

s YL P

L e T e
(e

/3

ey

Agenda

 Why Functional Programming?
* F# Language Walkthrough

* Smart Software ldeas
— Recommendations
— Fuzzy Matching
— Search
— Classification

Search

* Given a search term and a large document
corpus, rank and return a list of the most
relevant results...

Search
Simplify:

— For easy machine/language manipulation
— ... and most importantly, easy computation

e Vectors: natures own quality data structure
— Convenient machine representation (lists/arrays)
— Lots of existing vector math algorithms

After a loving
incubation period,
moonlight 2.0 has
been released. sou

moonlight

rce code
<a
href”something

after
incubation
loving

firefox
linux
N | binaries

else”>FireFox
binaries ... after “ “ 1 “ 6 “ 4 “ 6 “

Term Count

s % <

S 25 & x B

: g g gt g

* Documentl: Linux post: ““; ‘1’“6 ‘;“6 :

9

<

R

S = ©T o

 Document2: Animal post: 2215
s % s
* Vector space: 9“1 1“6 4“6 15
2“0 2“0 O“O 115

Term Count Issues

[-)
2) c
© = x =]
Q % § § "g ;3< gﬂ %D

. £ -] =

* ‘the dog penguin’ = & 6 & & = 8 a
— Linux: 9+0+2 = 11 9“1 1“6 4“6 0 2
— Animal: 2+1+5 =8 2 “ oll 2 “ ol o “ o115

* ‘the’ is overweight
* Enter TF-IDF: Term Frequency Inverse Document
Frequency

— A weight to evaluate how important a word is to a
corpus

e j.e.if ‘the’ occursin 98% of all documents, we shouldn’t
weight it very highly in the total query

TF-IDF

e Normalise the term count:
— tf = termCount / docWordCount

* Measure importance of term

— idf=log (|D| / termDocumentCount)
 where |D]| is the total documents in the corpus

o tfidf =tf * idf

— A high weight is reached by high term frequency, and
a low document frequency

Search Demo

C# 4.0

UNLEASHED

,.*'

& AR ‘\

AL

Microsoft*

Visual F#

Agenda

 Why Functional Programming?
* F# Language Walkthrough

* Smart Software ldeas
— Recommendations
— Fuzzy Matching
— Search
— Classification

Classification

Supervised and unsupervised methods
Support Vector Machines (SVM)

— Supervised learning for binary classification
— Training Inputs: ‘in” and ‘out’ vectors.

— SVM will then find a separating ‘hyperplane’ in an
n-dimensional space

Training costs, but classification is cheap
Can retrain on the fly in some cases

Classification

Classification

* Classification on 2 dimensions is easy, but
most input is multi-dimensional

e Some ‘tricks’ are needed to transform the
input data:

Classification

SVM with a polynomial
Kernel visualization

Created by:
Udi Aharoni

Demo: Spam Classification

Programming Models

Client side

e Shared memory, threads and locks
e Most used, most disastrous

o Synchronisation iscC
across mulitiple CPU’

etc) ‘
s Tough “heisenbugs’ "
Loop parallelism: OpenMP: .

ostly — shared memory &
s doesn't scale (cache

Message Passing: CCR, MPI, Erlang
Functional Languages: Implicit, no sharg
Software Transactional Memory |
e |IMO: Most likely to solve the problem

Resources

-t Developer Center
http://fsharp.net

NubFS
http://cs.hubfs.net

Don Syme, Adam Granicz,
and Antonio Cisternino
Foreword by Erik Mejer

Apress’

Collective

Intellig_@qce

O'REILLY"

Chris Smith

O'REILLY*

Thanks!

* Contact: joelpobar AT gmail dot com
* Blog: http://callvirt.net/blog
* Twitter: @joelpob

http://callvirt.net/blog

Active Patterns

let containsVowel (word: string) =

let letters = word.Chars

match letters with

| ContainsAny [‘a’; ‘e’; ‘i’; ‘o’; ‘u’] -»
true

| =2 false Fails to compile: need a
‘when’ guard

let letters = word.Chars

match letters with

| _ when letters.Contains(‘a’) ||
letters.Contains(‘e’) .. -> true

Active Patterns

e Enter Active Patterns:

— Single-Case Active Patterns

* Converts data from one type to another. Convert from
classes and values that can’t be matched on, to those that
can

— Multi-Case Active Patterns
* Partition the input space in to a known set of possible values
* Convert input data into discriminated union type

— Partial-Case Active Patterns

* For data that doesn’t always convert
* Return an option type

Computational Expressions

let read line() = System.Console.ReadLine()
let print_string(s) = printf "%s" s

print_string "What's your name? "
let name = read line()
print _string ("Hello,

+ name)

let read line(f) = f(System.Console.ReadlLine())
let print _string(s, f) = f(printf "%s" s)

print_string("What's your name? ", fun () ->
read_line(fun name ->
print_string("Hello, " + name, fun () -> ())))

Computational Expressions

type Result = Success of float | DivByZero

let divide x y =
match y with
| ©.0 -> DivByZero
| _ -> Success (x / vy)

let totalResistance rl r2 r3 =

let rlRes = divide 1.0 rl

match rlRes with

| DivByZero -> DivByZero

| Success (x)

->

let r2Res = divide 1.0 r2
match r2Res with
| DivByZero -> DivByZero
| Success (x) -> ...

Computational Expressions

let totalResistance rl r2 r3 =
desugared.Bind(
(divide 1.0 rl1),
(fun x ->
desugared.Bind(
(divide 1.0 r2),
(fun y ->
desugared.Bind(
(divide 1.0 r3),
(fun z ->
desugared.Return(
divide 1.0 (x + y + z)
)
)
))

Computational Expressions

match expr with [pat -> cexpr]+ -- ...
try cexpr finally cexpr -- e
try cexpr with pat -> cexpr -- .

expr = .
| expr { cexpr } -- let v = expr in v.Delay(fun () -> «cexpr»)
| { cexpr }
| [l cexpr |]
| [cexpr]
cexpr = let! pat = expr in cexpr -- v.Bind(expr, (fun pat -> cexpr))

| use pat = expr in cexpr -- v.Using(expr, (fun pat -> cexpr))

| do! cexprl in cexpr2 -- let! () = cexprl in cexpr2»

| do expr in cexpr -- let () = cexprl in cexpr2»

| for pat in expr do cexpr -- v.For(expr, (fun pat -> cexpr))

| while expr do cexpr -- v.While((fun () -> expr),

v.Delay(fun () -> cexpr))

| if expr then cexpr else cexpr -- if expr then cexprl else cexpr2

| if expr then cexpr -- if expr then cexprl else v.Zero()

| cexpr; cexpr -- v.Combine(cexprl, v.Delay(fun () -> cexpr2))
| return expr -- v.Return(expr)

| yield expr -- v.Yield(expr)

|

|

|

Why is Multi-threading so Hard?

How Can F# Help?

/

Purity

N

N (

I Gl Ree
.F ."%'\,.gu t
LR |
b

Not a Silver Bullet!

The State of Asynchronous I/0O

public static void ProcessImagesInBulk()

{
public static void ReadInImageCallback(IA: Console.WritelLine("Processing images... ");
. { long t@ = Environment.TickCount;
using System; ImageStateObject state = (ImageStateObj¢ NumImagesToFinish = numImages;
using System.I0; Stream stream = state.fs; AsyncCallback readImageCallback =
using System.Threading; | int bytesRead = stream.EndRead(asyncRest hew AsyncCallback(ReadInImageCallback);
using System.Runt%me.Inter9pServ1c‘ if (bytesRead != numPixels) for (int i = @; i < numImages; i++)
using System.Runtime.Remoting.Mess throw new Exception(String.Format {
using System.Security.Permissions; ("In ReadInImageCallback, got the ImageStateObject state = new ImageStateObject();
. "bytes from the image: {@}.", byt state.pixels = new byte[numPixels];
public class BulkImageProcAsync ProcessImage(state.pixels, state.imageN state.imageNum = i;
{)) stream.Close();
publ}c const ;trlng ImageBaseNan FileStream fs = new FileStream(ImageBaseName + i + ".tmp",
public const int numImages = 20@ FileStream fs = new FileStream(ImageBas¢ FileMode.Open, FileAccess.Read, FileShare.Read, 1, true);
public const int numPixels = 512 ".done", FileMode.Create, FileAcces: state.fs = fs;
. L. 4096, false); fs.BeginRead(state.pixels, @, numPixels, readImageCallback,
public static int processImageRe fs Write(state.pixels, @, numPixels); state);
fs.Close(); }
public static int NumImagesToFin
publ%c stat%c Object[] NumImages. state.pixels = null; bool mustBlock = false;
public static Object[] WaitObjec fs = null; lock (NumImagesMutex)
. . {
public class ImageStateObject lock (NumImagesMutex) if (NumImagesToFinish > @)
. . { mustBlock = true;
public byte[] pixels; NumImagesToFinish--; }
public int imageNum; if (NumImagesToFinish == @)
public FileStream fs; { if (mustBlock)
} Monitor.Enter(WaitObject); {
Monitor.Pulse(WaitObject); Console.WriteLine("All worker threads are queued. " +
Monitor.Exit(WaitObject); " Blocking until they complete. numLeft: {@}",
b NumImagesToFinish);
} Monitor.Enter(WaitObject);
Monitor.Wait(Wai ect);
} i Wait(WaitObject)
Monitor.Exit(WaitObject);
}
long t1 = Environment.TickCount;
o L] » El
AsynChronous Flle I/O Console.WriteLine("Total time processing images: {@}ms",

(t1 - te));
http://msdn.microsoft.com/en-us/library/kztecsys.aspx }

http://msdn.microsoft.com/en-us/library/kztecsys.aspx
http://msdn.microsoft.com/en-us/library/kztecsys.aspx
http://msdn.microsoft.com/en-us/library/kztecsys.aspx
http://msdn.microsoft.com/en-us/library/kztecsys.aspx

The State of Asynchronous 1/0

let ProcessImageAsync(i) =
async { use inStream = File.OpenRead(sprintf "ImageX%d.tmp" i)
let! pixels = inStream.AsyncRead(numPixels)
let pixels' = ProcessImage(pixels, i)
use outStream = File.OpenWrite(sprintf "Image%d.done" i)
do! outStream.AsyncWrite(pixels') }

let ProcessImagesAsync() =
let tasks = [for i in 1..numImages -> ProcessImageAsync(i)]
let parallelTasks = Async.Parallel tasks
Async.Run parallelTasks

“Asynchronous File 1/0”

http://msdn.microsoft.com/en-us/library/kztecsys.aspx

http://msdn.microsoft.com/en-us/library/kztecsys.aspx
http://msdn.microsoft.com/en-us/library/kztecsys.aspx
http://msdn.microsoft.com/en-us/library/kztecsys.aspx
http://msdn.microsoft.com/en-us/library/kztecsys.aspx

Anatomy of an Async Workflow

let ProcessImageAsync(i) =
async { use inStream = File.OpenRead(sprintf "ImageX%d.tmp" i)
let! pixels = inStream.AsyncRead(numPixels)
let pixels' = ProcessImage(pixels, i)
use outStream = File.OpenWrite(sprintf "Image%d.done" i)
do! outStream.AsyncWrite(pixels') }

let ProcessImagesAsync() =
let tasks = [for i in 1..numImages -> ProcessImageAsync(i)]
let parallelTasks = Async.Parallel tasks
Async.Run parallelTasks

Anatomy of an Async Workflow

let ProcessImageAsync(i) =
async { use inStream = File.OpenRead(sprintf "ImageX%d.tmp" i)
let! pixels = inStream.AsyncRead(numPixels)
let pixels' = ProcessImage(pixels, i)
use outStream = File.OpenWrite(sprintf "Image%d.done" i)
do! outStream.AsyncWrite(pixels') }

let ProcessImagesAsync() =
let tasks = [for i in 1..numImages -> ProcessImageAsync(i)]
let parallelTasks = Async.Parallel tasks
Async.Run parallelTasks

Anatomy of an Async Workflow

let ProcessImageAsync(i) =
async { use inStream = File.OpenRead(sprintf "ImageX%d.tmp" i)
let! pixels = inStream.AsyncRead(numPixels)
let pixels' = ProcessImage(pixels, i)
use outStream = File.OpenWrite(sprintf "Image%d.done" i)
do! outStream.AsyncWrite(pixels') }

let ProcessImagesAsync() =
let tasks = [for i in 1..numImages -> ProcessImageAsync(i)]
let parallelTasks = Async.Parallel tasks
Async.Run parallelTasks

Anatomy of an Async Workflow

let ProcessImageAsync(i) =
async { use inStream = File.OpenRead(sprintf "ImageX%d.tmp" i)
let! pixels = inStream.AsyncRead(numPixels)
let pixels' = ProcessImage(pixels, i)
use outStream = File.OpenWrite(sprintf "Image%d.done" i)
do! loutStream.AsyncWrite(pixels"') }

let ProcessImagesAsync() =
let tasks = [for i in 1..numImages -> ProcessImageAsync(i)]
let parallelTasks = Async.Parallel tasks
Async.Run parallelTasks

Anatomy of an Async Workflow

let ProcessImageAsync(i) =
async { use inStream = File.OpenRead(sprintf "ImageX%d.tmp" i)
let! pixels = inStream.AsyncRead(numPixels)
let pixels' = ProcessImage(pixels, i)
use outStream = File.OpenWrite(sprintf "Image%d.done" i)
do! outStream.AsyncWrite(pixels') }

let ProcessImagesAsync() =
let tasks = [for i in 1..numImages -> ProcessImageAsync(i)]
let parallelTasks =|Async.Parallel tasks
Async.Run parallelTasks

Anatomy of an Async Workflow

let ProcessImageAsync(i) =
async { use inStream = File.OpenRead(sprintf "ImageX%d.tmp" i)
let! pixels = inStream.AsyncRead(numPixels)
let pixels' = ProcessImage(pixels, i)
use outStream = File.OpenWrite(sprintf "Image%d.done" i)
do! outStream.AsyncWrite(pixels') }

let ProcessImagesAsync() =
let tasks = [for i in 1..numImages -> ProcessImageAsync(i)]
let parallelTasks = Async.Parallel tasks
Async.Run parallelTasks

