Scala at Work

Martin Odersky
Scala Solutions and EPFL

Scala -(I)ﬂ-

- £COLE POLYTECHNIQUE
Solutions FEDERALE DE LAUSANNE

Where it comes from

Scala has established itself as one of the main alternative languages
on the JVM.

Prehistory:

1996 — 1997: Pizza
1998 — 2000: GJ, Java generics, javac
(“make Java better”)

Timeline:

2003 — 2006: The Scala “Experiment”
2006 — 2009: An industrial strength programming language
(“make a better Java”)

E Scala

Momentum

Open-source language with

= Site scala-lang.org: 100K+ visitors/month

= 40,000 downloads/month, 10x growth last year
» 12 books in print

» Two conferences: Scala Liftoff and ScalaDays
= 33+ active user groups

* 60% USA, 30% Europe, 10% rest

E Scala

Linked [}

Xerox G}

SIEMENS
¢

& S EeDF
foursquare

. TOMTOMW

| hatchar e -
DEPOT.
o dutines guardian

yammers
. #UBS Autodesk YAMmMe

Solutions 4

Wwhy Scala?

Object-Oriented

Scala is a Unifier

Agile, with lightweight syntax

., Scala . Functional

Safe and performant, with strong static tpying

Let’s see an example:

A class ...

public class Person {

public final String name;
public final int age;
Person(String name, int age) {

this.name = name;

... In Java:
this.age = age;
}
}
i Scala: class Person(val name: String,
... In Scala: val age: Int)

E Scala

... and Its usage

import java.util.ArraylList;

Person[] people;

Person[] minors;

Person[] adults;

{ ArrayList<Person> minorsList = new ArrayList<Person>();
ArrayList<Person> adultsList = new ArrayList<Person>();

... In Java: for (int i = @; i < people.length; i++)

(people[i].age < 18 ? minorsList : adultsList)

.add(people[i]);

minorsList.toArray(people);

minors
adults

adultsList.toArray(people);

} A function value 1

[An infix method call 1 /

------------------------------ =
\

... In Scala: val people: Array[Person] \/
val (minors, adults) = people partition (_.age < 18)

EScaIa
A simple pattern match

The Bottom Line

When going from Java to Scala, expect at least a factor of 2
reduction in LOC.

But does it matter? _
Doesn'’t Eclipse write these extra lines for me?

This does matter. Eye-tracking experiments* show that for program
compt)rekt\ens.lon, average time spent per word of source code is
constant.

So, roughly, half the code means half the time necessary to
understand it.

*G. Dubochet. Computer Code as a Medium for Human Communication: Are Programming
Languages Improving? In 21st Annual Psychology of Programming Interest Group Conference,
pages 174-187, Limerick, Ireland, 2009.

E Scala .

E Scala

But there’s more to it

11

Embedding Domain-Specific Languages

Scala’s flexible syntax makes it
easy to define

high-level APIs &
embedded DSLs

// asynchronous message send

actor ! message

// message receive

receive
Examples: {

- actors (akka, Twitter’s
message queues)
- specs, ScalaCheck case msgpat, => action,

- ScalaQuery, squeryl, querulous }

case msgpat, => action,

scalac’s plugin architecture makes it easy to typecheck DSLs and to
enrich their semantics.

EScaIa |

Scalability demands extensibility

Take numeric data types:
— Today's languages support int, long, float, double.

— Should they also support BigInt, BigDecimal, Complex, Rational,
Interval, Polynomial?

There are good reasons for each of these types
But a language combining them all would be too complex.

Better alternative: Let users grow their language according to their needs.

13

Adding new datatypes - seamlessly

For instance type BigInt:

def factorial(x: BigInt): BigInt =
if (x == @) 1 else x * factorial(x - 1)

Compare with using Java's class:

import java.math.BigInteger
def factorial(x: BigInteger): BiglInteger =
if (x == BigInteger.ZERO)
BigInteger.ONE
else
x.multiply(factorial(x.subtract(BigInteger.ONE)))

Scala
Solutions

14

Implementing new datatypes -
seamlessly

d

+ is an identifier; can be used as a
method name

i ava.math.BigInteger

cla gInt(val bigInteger: BiglInt
exteny [java.lang.Number {

def + (that: BigInt) =
new BigInt(this.bigInteger add

def - (that: BigInt) =
new BigInt(this.bigInteger subt

Infix operations are method calls:
a+Db isthe same as a.+(b)
a add b is the same as a.add(b)

)

that.bigInteger)

ract that.bigInteger)

.. // other methods implemented analogously
}
Scala
Solutions

15

Adding new control structures

For instance using for resource control (in Java 7)

using (new BufferedReader(new FileReader(path))) {
f => println(f.readLine())

}

Instead of;

val ¥ = new BufferedReader(new FileReader(path))
try {
println(f.readLine())
} finally {
if (f != null)
try f.close()
catch { case ex: IOException => }

Scala
Solutions

16

Implementing new control structures:

Here's how one would go about implementing using:

%parameter... } [... Supporting a close method]

def using[T <: { def close()‘}]
(resource: T)
(block: T => Unit) =

try {
block(resource)
} finally { A closure that takes a T parameter]

if (resource != null)
try resource.close()
catch { case ex: IOException => }

Scala
Solutions

17

Producer or Consumer?

Scala feels radically different for producers and consumers
of advanced libraries.

For the consumer:

— Really easy

— Things work intuitively

— Can concentrate on domain, not implementation
For the producer:

— Sophisticated tool set

— Can push the boundaries of what's possible

— Requires expertise and taste

E Scala .

E Scala

Scalability at work:
Scala 2.8 Collections

19

Collection Properties

object-oriented
generic: List[T], Map[K, V]

optionally persistent, e.g.
collection.immutable.Seq

higher-order, with methods
such as foreach, map,
filter.

Uniform return type principle:
Operations return collections of
the same type (constructor) as
their left operand, as long as
this makes sense.

scala> val ys = List(1, 2, 3)
ys: List[Int] = List(1, 2, 3)

scala> val xs: Seq[Int] = ys
xs: Seq[Int] = List(1, 2, 3)

scala>xs map (_ + 1)
resO: Seq[Int] = List(2, 3, 4)

scala>ys map (_ + 1)
resl: List[Int] = List(2, 3, 4)

This makes a very elegant and powerful combination.

E Scala

4-20

Using Collections: Map and filter

scala> val xs = List(1, 2, 3)
Xs: List[Int] = List(1l, 2, 3)

scala> val ys = xs map (x = x + 1)
ys: List[Int] = List(2, 3, 4)

scala> val ys = xs map (_ + 1)
ys: List[Int] = List(2, 3, 4)

scala> val zs = ys filter (_ % 2 == 0)
zs: List[Int] = List(2, 4)

scala> val as = ys map (0 to _)
as: List(Range(0, 1, 2), Range(O0, 1, 2, 3), Range(O0, 1, 2, 3, 4))

E Scala

21

Using Collections: Flatmap

scala> val bs
bs: List[Int]

scala> val bs
bs: List[Int]

as.flatten
List(0, 1, 2, 0, 1, 2,

ys flatmMap (0 to _)
List(0, 1, 2, 0, 1, 2,

3, 0, 1, 2,

3, 0, 1, 2,

3, 4)

3, 4)

22

Using Collections: For Notation

scala> for (x <- xs) yield x + 1 // same as map
resld: List[Int] = List(2, 3, 4)

scala> for (x <- resl4 if x % 2 == 0) yield x // ~ filter
resl5: List[Int] = List(2, 4)

scala> for (x <- xs; y <- 0 to x) yield y // same as flatMap
res17: List[Int] = List(0, 1, 0, 1, 2, 0, 1, 2, 3)

Scala
Solutions

23

Using Maps

scala> val m = Map('l' -> "ABC", 2 -> "DEF", 3 -> "GHI'")
m: Map[Anyval, String] = Map((1,ABC), (2,DEF), (3,GHI))

scala> val m = Map(1 -> "ABC", 2 -> "DEF", 3 -> "GHI")
m: Map[Int, String] = Map((1,ABC), (2,DEF), (3,GHI))

scala> m(2)
resO: String = DEF

scala>m + (4 -> "JIKL")
resl: Map[Int, String] = Map((1,ABC), (2,DEF), (3,GHI),

scala> m map { case (k, v) => (v, k) }
res8: Map[String,Int] = Map((ABC,1), (DEF,2), (GHI,3))

(4,3IKL))

E Scala

24

An Example

« Task: Phone keys have mnemonics assigned to them.
val mnemonics = Map(
‘2" -> "ABC", '3' -> "DEF", '4' -> "GHI", '5' -> "JKL",
'6' -> "MNO", '7' -> "PQRS", '8' -> "TUV", '9' -> "WXYZ")
« Assume you are given a dictionary dict as a list of words. Design a class
Coder with a method translate such that

new Coder(dict).translate(phoneNumber)

produces all phrases of words in dict that can serve as mnemonics for the
phone number.

« Example: The phone number “7225276257” should have the mnemonic

Scala rocks
as one element of the list of solution phrases.

E Scala -

Program Example: Phone Mnemonics

* This example was taken from:

Lutz Prechelt: An Empirical Comparison of Seven Programming
Languages. [EEE Computer 33(10): 23-29 (2000)

« Tested with Tcl, Python, Perl, Rexx, Java, C++, C

* Code size medians:
— 100 loc for scripting languages
— 200-300 loc for the others

E Scala e

http://www.informatik.uni-trier.de/~ley/db/journals/computer/computer33.html

Outline of Class Coder

import collection.mutable.HashMap
class Coder(words: List[String]) {

private val mnemonics = Map(
I2l _> "ABC", l3l _> "DEF", I4l _> "GHI") l5l _> "JKL",
I6l _> "MNO", l7l _> "PQRS") l8l _> "TUV", I9I _> "WXYZ")

/** Invert the mnemonics map to give a map from chars 'A"' ... 'Z' to '2' ... '9' */
private val upperCode: Map[Char, Char] = ??

/** Maps a word to the digit string it can represent */
private def wordCode(word: String): String = ??

/** A map from digit strings to the words that represent them */

private val wordsForNum = new HashMap[String, Set[String]] {
override def default(number: String) = Set()

}

for (word <- words) wordsForNum(wordCode(word)) += word

/** Return all ways to encode a number as a list of words */
def encode(number: String): List[List[String]] = ??

/** Maps a number to a list of all word phrases that can represent it */
def translate(number: String): List[String] = encode(number) map (_ mkString " ")

}

Scala
Solutions 2.07

Class Coder (1)

import collection.mutable.HashMap
class Coder(words: List[String]) {
private val mnemonics = Map(

I2l _> IIABCII, l3l _> IIDEFII, I4l _> IIGHI", l5l _> IIJKLII,
I6l _> IIMNOII, l7l _> IIPQRSII) l8l _> IITUV", I9I _> IIWXYZ")

private val upperCode: Map[Char, Char] =
for ((digit, str) <- m; letter <- str) yield (letter -> digit)

/** Maps a word to the digit string it can represent */
private def wordCode(word: String): String = word map (c => upperCode(c.toUpper))

/** A map from digit strings to the words that represent them */

private val wordsForNum = new HashMap[String, Set[String]] {
override def default(number: String) = Set()

}

for (word <- words) wordsForNum(wordCode(word)) += word

/** Return all ways to encode a number as a list of words */
def encode(number: String): List[List[String]] = ??

/** Maps a number to a list of all word phrases that can represent it */
def translate(number: String): List[String] = encode(number) map (_ mkString " ")

/** Invert the mnemonics map to give a map from chars 'A"' ... 'Z' to '2' ... '9' */

Scala
Solutions

2-28

Class Coder (2)

import collection.mutable.HashMap

class Coder(words: List[String]) {

/** Return all ways to encode a number as a list of words */
def encode(number: String): List[List[String]] =

if (number.isEmpty)
List(List())
else

for {
splitPoint <- (1 to number.length).tolList

word <- wordsForNum(number take splitPoint)
rest <- encode(number drop splitPoint)
} yield word :: rest

/** Maps a number to a list of all word phrases that can represent it */

def translate(number: String): List[String] = encode(number) map (_ mkString " ")

}

Scala
Solutions 2-29

How is all this implemented?

30

Everything is a Library

« Collections feel like they are an organic part of Scala

« But in fact the language does not contain any collection-
related constructs

— no collection types
— no collection literals
— no collection operators
« Everything is done in a library

« Everything is extensible

— You can write your own collections which look and feel like
the standard ones

E Scala .

Some General Scala Collections

Traversable

SortedSet Bitset

Scala
Solutions 4-32

Mutable or Immutable?

« All general collections come in three forms, and are stored in different
packages:

scala.collection
scala.collection.mutable
scala.collection.immutable

 Immutable is the default, i.e. predefined imports go to
scala.collection.immutable

« General collections in scala.collection can be mutable or immutable.
* There are aliases for the most commonly used collections.
scala.collection.immutable.List where it is defined

scala.List the alias in the scala package
List because scala. is
automatically imported

E Scala s

Immutable Scala Collections

Map

SortedSet BitSet istSe HashMap SortedMap ListMap

TreeMap

IndexedSeq LinearSeq

Range i Strea Queue

Scala
Solutions 4-34

Mutable Scala Collections

Map

HashMap

shiMap OpenHashMap

ObsarvablaMap

IndaxadSeq

StringBuikdar

ObsarvablaBuffar

Scala
Solutions

ListhMap

Travarsabla

Mul iMap

hronizadMap Immutablala

ListBuffar

hronized Stack

r
llarabla
HashSat LinkedHashSat
Obsarvab SynchronizedSat ImmutablaSa
r
Seq

LinearSaq

MutablaList LirkeadList

Quaua

ronizadProrityQusua

4-35

New Implementations: Vectors and Hash Tries

L " ¥

| " f

- = =)
- # | " 7
- \ !
- e !

SR W W L3y =l === HEEE
=1 ol = FV I

 Trees with branch factor of 32.

« Persistent data structures with very efficient sequential and random
access.

« Invented by Phil Bagwell, then adopted in Clojure.
* New: Persistent prepend/append/update in constant amortized time.
* Next: Fast splits and joins for parallel transformations.

Scala
Solutions

The Uniform Return Type Principle

Bulk operations return
collections of the same
type (constructor) as their

left operand. (DWIM)

scala> val ys = List(1, 2, 3)
ys: List[Int] = List(1, 2, 3)

scala> val xs: Seq[Int] = ys
xs: Seq[Int] = List(1, 2, 3)

scala> xs map (_ + 1)
resO: Seq[Int] = List(2, 3, 4)

scala>ys map (_ + 1)
resl: List[Int] = List(2, 3, 4)

This is tricky to implement without code duplication!

Scala
Solutions

Pre 2.8 Collection Structure

trait Iterable[A] {
def filter(p: A => Boolean): Iterable[A] = ...
def partition(p: A => Boolean) =
(filter(p()), filter(!p()))
def map[B](f: A => B): Iterable[B] = ...
}

trait Seq[A] extends Iterable[A] {
def filter(p: A => Boolean): Seq[A] = ...
override def partition(p: A => Boolean) =

(filter(p(_)), filter(!p()))
def map[B](f: A => B): Seq[B] = ...

4-38

Types force duplication

filter needs to be re-defined on each level

partition also needs to be re-implemented on each level, even
though its definition is everywhere the same.

The same pattern repeats for many other operations and types.

4-39

Signs of Bit Rot

Lots of duplications of methods.

— Methods returning collections have to be repeated for every collection
type.

Inconsistencies.

— Sometimes methods such as filter, map were not specialized in
subclasses

— More often, they only existed in subclasses, even though they could be
generalized

“Broken window” effect.

— Classes that already had some ad-hoc methods became dumping
grounds for lots more.

— Classes that didn’t stayed clean.

E Scala >

Excerpts from List.scala

File Edit Options Buffers Tools Scala Help

* and elements are in the range between "“start™ (inclusive) ~
and “end” (exclusive)

*
*
* [@param start the start value of the list

* fiparam end the end wvalue of the list

* (dparam step the increment function of the list, which given “v?
* computes “w<subrn+l</sub:”. Must be monotonically 2
* or decreasing.

* fireturn the sorted list of all integers in range [start;en?

@deprecated("use ~iterate' instead")
def range(start: Int, end: Int, step: Int =» Int): List[Int] = {
val up = step(start) > start
val down = step(start) < start
val b = new ListBuffer[Int]
var 1 = start
while {(lup || i < end) && {!down || i > end}) {
b +=1
val next = step(i)
if (i == next)
throw new IllegalArgumentException(”the step function did no?
i = next

b.tolList
1

[] /** Create a list containing several copies of an element.
*
* [@param n the length of the resulting list
* [@param elem the element composing the resulting list
* f@return a list composed of n elements all equal to elem
*/
@deprecated(use “fill' instead")
def make[A](n: Int, elem: A): List[A] = {
val b = new ListBuffer[A]
var 1 = @
while (i < n) {
b += elem
i+=1
¥
b.tolist
¥ s
--({Unix)-- List.scala 5% 1447 (Scala)——-———--—-———-—-————————————————" (8

param xs the iterable of pairs to unzip
* freturn a pair of lists.
*f
@deprecated("use “xs.unzip' instead of ~List.unzip(xs)'")
def unzip[A,B](xs: Iterable[(A,B)]): (List[A], List[B]) =
ws.foldRight[(List[A], List[B])]{(Nil, Nil}} {
case ((x, y), (x5, ys)) == (x 11 x5, ¥y 11 ys)
h

|

ll,f**
* Returns the “Left™ wvalues in the given “Iterable’
* of “Either’s.
*/
@deprecated("use “xs partialMap { case Left(x: A) = x }' inste?
def lefts[A, B](es: Iterable[Either[A, B]]) =
es.foldRight[List[A]](Nil)({(e, as) =» e match {
case Left(a) =» a :: as
case Right(_) => as

1)

II,I'**
* Returns the “Right™ walues in the given” Iterable™ of “Eithe?®
*/
@deprecated("use “xs partialMap { case Right(x: B) =» x }' inst?
def rights[A, B](es: Iterable[Either[A, B]]} =
es.foldRight[List[B]](Nil)({e, bs) =» e match {
case Left(_) =» bs
case Right(b) => b :: bs
)

/** Transforms an Iterable of Eithers into a pair of lists.
*

* ([param xs the iterable of Eithers to separate

* freturn a pair of lists.
*f
@deprecated("use ~Either.separate' instead")
def separate[A,B](es: Iterable[Either[A, B]]): (List[A], List[B%*
es.foldright[(List[A], List[B])]{(Nil, Nil}} {
case (Left(a), (lefts, rights)) =» (a :: lefts, rights)
case (Right(b), (lefts, rights)) =» (lefts, b :: rights)
¥

(Unix)-- List.scala 65% 1538 (Scala)-—-—-—-—-——-—--—-—--—-——-——~———————.

How to do better?

Can we abstract out the return type?

Look at map: Need to abstract out the type constructor, not just the type.

trait Iterable[A]
def map[B](f: A => B): Iterable[B]

trait Seq[A]
def map[B](f: A => B): Seq[B]

But we can do that using Scala’s higher-kinded types!

E Scala

HK Types Collection Structure

trait TraversablelLike[A, CC[X]] {
def filter(p: A => Boolean): CC[A]
def map[B](f: A => B): CC[B]

trait Traversable[A] extends TraversablelLike[A, Traversable]
trait Iterable[A] extends Traversablelike[A, Iterable]

trait Seq[A] extends TraversablelLike[A, Seq]

Here, CC is a parameter representing a type constructor.

E Scala

Implementation with Builders

All ops in Traversable are implemented in terms of foreach and newBuilder.

trait Builder[A, Coll] {
def += (elem: A) // add elems
def result: Coll // return result
}
trait TraversablelLike[A, CC[X]] {
def foreach(f: A => Unit)
def newBuilder[B]: Builder[B, CC[B]]
def map[B](f: A => B): CC[B] = {
val b = newBuilder[B]
foreach (x => b += f(x))
b.result

EScaIa)

Unfortunately ...

... things are not as parametric as it seems at first. Take:

class BitSet extends Set[Int]

scala> val bs = BitSet(1, 2, 3)
bs: scala.collection.immutable.BitSet = BitSet(1, 2, 3)

scala> bs map (_ + 1)
res@: scala.collection.immutable.BitSet = BitSet(2, 3, 4)

scala> bs map (_.toString + "!")
resl: scala.collection.immutable.Set[java.lang.String] = Set(1!, 2!, 3!)

Note that the result type is the “best possible” type that fits the element
type of the new collection.

Other examples: SortedSet, String.

E Scala

How to advance?

We need more flexibility. Can we define our own type system for
collections?

Question: Given old collection type From, new element type Elem, and
new collection type To:

Can an operation on From build a collection of type To with Elem
elements?

Captured in: CanBuildFrom[From, Elem, To]

Facts about CanBuildFrom

Can be stated as axioms and inference rules:

CanBuildFrom[Traversable[A], B, Traversable[B]]
CanBuildFrom[Set[A], B, Set[B]]
CanBuildFrom[BitSet, B, Set[B]]
CanBuildFrom[BitSet, Int, BitSet]
CanBuildFrom[String, Char, String]
CanBuildFrom[String, B, Seq[B]]

CanBuildFrom[SortedSet[A], B, SortedSet[B]] :- Ordering[B]

where A and B are arbitrary types.

E Scala

Implicitly Injected Theories

Type theories such as the one for CanBuildFrom can be injected using
Implicits.
A predicate:

trait CanBuildFrom[From, Elem, To] {
def apply(coll: From): Builder[Elem, To]

}

Axioms:
implicit def bfl1l[A, B]: CanBuildFrom[Traversable[A], B, Traversable[B]]
implicit def bf2[A, B]: CanBuildFrom[Set[A], B, Set[B]]
implicit def bf3: CanBuildFrom[BitSet, Int, BitSet]

Inference rule:
implicit def bf4[A, B] (implicit ord: Ordering[B])
: CanBuildFrom[SortedSet[A], B, SortedSet[B]]

E Scala

Connecting with Map

 Here's how map can be defined in terms CanBuildFrom:

trait Traversablelike[A, Coll] { this: Coll =>

def foreach(f: A => Unit)

def newBuilder: Builder[A, Coll]

def map[B, To](f: A => B)

(implicit cbf: CanBuildFrom[Coll, B, To]): To

val b = cbf(this)
foreach (x => b += f(x))
b.result

{

Objections

Scala
Solutions 4-50

Scala 2.8 collections library a case of "the longest suicide note in history™ 7 - Stack Overflow - Mozilla Firefox

Wiew History Bookmarks Tools Help
- c (e é, http: f{stackoverflow. com fquestions/ 1722726 fis-the-scala-2-8-collectionsibrar y-a case-of-thedongest-suicide-note: |:] Tr T n'-'lv stackoverflow scala

sited |J Martin Odersky Home ... [*] Gmail - Inbox (17) -o... [-=] Google Calendar |J Martin Odersky Home ... ' The Scala Programmin... S7 Machrichten aus Politik... G MeteoSchweiz - W

e Scala 2.8 collections librarya ... =

First time here? Check out the FAQ!

login = careers | about faq Q, search

= stackoverflow

s the Scala 2.8 collections library a case of “the longest suicide note in history” ?

Innovation Starts Here Hello World!

Free Free Free Free Stack Overflow is a

Create Free Software collaboratively edited
question and answer site for

A First note the inflammatory subject title is a quotation made about the manifesto of a UK political party in programmers — regardless of
the early 1980s. This question is subjective but it is a genuine guestion, I've made it CW and I'd like platform or language. It's 100%

43 some opinions on the matter. free, no registration required.

h Despite whatever my wife and coworkers keep telling me, | don't think I'm an idiot: | have a good degree about » faqg »

in mathematics from the University of Oxford and I've been programming commercially for almost 12

years and in Scala for about a year (also commercially).
tagged

| have just started to look at the Scala collections library re-implementation which is coming in the
imminent 2.8 release. Those familiar with the library from 2.7 will notice that the library, from a usage
perspective, has changed little. For example... collections | x 1010

scala | x 849

subjective | ®* 6349

» List{"Paris", "London").map{_ .length)
res@: List[Int] List(5, 6) scala-2.8 | x 32

Lwould work ineither versions. The library is eminently useable: in fact it's fantastic. However, those asked

Use Cases

 How to explain

def map[B, To](f: A => B)
(implicit cbf: CanBuildFrom[Coll, B, To]): To

to a beginner?
« Key observation: We can approximate the type of map.

* For everyone but the most expert user

def map[B](f: A => B): Traversable[B] // in class Traversable
def map[B](f: A => B): Seq[B] // in class Seq, etc

IS detailed enough.

 These types are correct, they are just not as general as the type
that's actually implemented.

E Scala e

Part of the Solution: Flexible Doc Comments

S

=

def lastOption: Option[i)

Optionally

selects the last element

def map[B]l (£: (A) = B): Traversable[B]

[use case]

Builds a new collection by applying a function to all elermments of this collection.

returns

the element type of the returned collection.

a new collection resulting from applying the given function £ to each element of this
collection and collecting the results.

attributes: abstract

def map[B, That] (f: (A) = B) (implicit bf: CanBuildFrom[Traversable[A], B,

: That

Builds a new collection by applying a function to all elements of this collection.

returns

the element type of the returned collection.

the class of the returned collection. Where possible, That is the same class as the
current collection class Repr, but this depends on the element type B being admissible

for that class, which means that an implicit instance of type CanBuildFrom [Repr, B,
That] is found.

an implicit value of class CanBuildFrom which determines the result class That from
the current representation type Repr and and the new element type B.

a new collection of type That resulting from applying the given function £ to each
element of this collection and collecting the results.

definition classes: TraversablelLike

def max[B >: A] (implicit cmp: Ordering[B]l): &
Finds the largest element

def min:

Mico ool

Iy

Findz tho lamact alamant

4-53

Going Further

* In Scala 2.9, collections will support parallel operations.
* Will be out by January 2011.

« The right tool for addressing the PPP (popular parallel programming)
challenge.

* | expect this to be the cornerstone for making use of multicores for
the rest of us.

E Scala e

But how long will it take me
to switch?

55

[Alex McGuire, EDF, who replaced majority of)

300K lines Java with Scala:
“Picking up Scala was really easy.” Curves
“Begin by writing Scala in Java style.”

“‘With Scala you can mix and match with your

old Java.”
A

111

You can manage risk really well.”

N

.
.

: ¢

Alex Payne, Twitter: .’

171 : J L

Ops doesn K
i L 4
100% : ‘0

Keeps familiar environment:

Tools: JavaRebel, FindBugs, Maven, ...

Libraries: nio, collections, FJ, ...

Frameworks; Spring, OSGlI, J2EE, ...
EScaIa 4-6 weeks 8-12 weeks ...all work out of the box.

IDE’s: Eclipse, IDEA, Netbeans, ...

How to get started

100s of resources on the
web.

Here are three great
entry points:

e Simply Scala
« Scalazine @ artima.com

e Scala for Java
refugees

Scala
Solutions

%2 Simply Scala - Mozilla Firefox

File Edit Wiew History Bookmarks Tools Help
(8] Mast visited %] Gmail - Inbax (17) - 0... [5] Google Calendar S7 Machrichten aus Politik... E SPIEGEL OMLIME - Ma... ©5 programming

Simply Scala

Created by Anthony Bagu

L v | Commens | meow | eemiorescas

e lcome to Simply Scala!

Soala is a wodern computer prograwming lancguage.
Here you can discover more sbout its features in
a simple interactive way.

Creating user space...

Feady for code.

case class Personiname: 3tring, age: Int)

defined class Person

wal persons = List (Person("Bokh™, 16), Person("Jane™, 21)
persons: List[Person] = List (Person(Bob,16), Person(Jane,21)
wal (minors, adults) = persons partition (_.age < 18)
minors: List[Person] = List (Person(Bob,14)

adults: List[Person] = List (Person(Jane,21)

@ - c {(at I |j http: v, simplyscala, comy T ' simplyscala ,_

rTutorialw fCode Snippetsw fReferencew fGIossarﬂ

val (minors, adults) = persons partition (_age < 18) Reset

Evaluat

Entering Code

Allthe examples in this tutorial can be run simply by clicking on them.

b
3 >
X Find: | scala ‘ Mext ‘f Previous & Highlight all [] Match case
Done

How to find out more

Scala site: www.scala-lang.org 12 books

The Scala Programming Language - Mozilla Firefox
File Edit Yiew History Bookmarks Tools Help

@ v c A & l’ http: fjwww.scala-lang.orgf B dl ";simplyscala /‘>‘

|2 Most visited M1 Gmail - Inbox (17) - 0... [-5] Google Calendar S7 Nachrichten aus Politik... E SPIEGEL ONLINE - Na... &3 programming »

|| eseur

Programming
= Scala
] e .
f‘ Learn Scala C _d d
2 ; A =27
2 e-safe prog guage o ToyFiy
Inthe Enterprise a
that integra ¢ /
R Rasanrch ‘ and fun
“Comumnﬁy Scala is fully interoperable with

Java.

3
Compiler Read mo

Introducing Scala

Scala is a general purpose programming language designed to express common programming patterns in a concise,
elegant, and type-safe way. It smoothly integrates features of object-oriented and functional languages, enabling Java
and other programmers to be more productive. Code sizes are typically reduced by a factor of two to three when
compared to an equivalent Java application. Read more

Scala API for remote monitoring and control
Created by robcd on 2008-07-20. Updated: 2009-07-21,17:35

The EISCAT Svalbard Radar# is a fixed 42m dish and a fully steerable 32m dish used for research into the Suns
interaction with the magnetosphere. JMaCS | the Java AP derived from experimental software developed for the

raanitarina and cantrallinag af thaca dichar hac racantlu hann vaurittan in Qaala

< |
X Find: lscala ‘ & next @ Previous & Highlight all [[] Match case
http:f fwww.scala-lang.orgf# 5 8

5%

Support

Open Source Ecosystem ...

akka scalable actors

sbt simple build tool

lift, play web frameworks
kestrel, querulous middleware from Twitter
Migrations middleware from Sony
ScalaTest, specs, ScalaCheck testing support
ScalaModules OSGl integration

... complemented by commercial support

E Scala

59

Scala

SDI Utiﬂns Your shopping basket is empty.

View your cart | Checkout now

The Company Products Training Consulting Partners Community What is Scala® Jobs

Scala Solutions

Training Lausanne

We hold regular training courses at our facility in

Unrivalled Expertise ! Lausanne.

Pro Development Products

Hext Courze

Top-notch Consultants

¥ (Object Oriented Meets Functional, 25-25
Movembsr 2010, 1,530 chi

Call or send a message to reserve a3 place for
the course.

Cin-line registration and payment will be

‘We h cunded Scala Solutions to provide the tools and services needed .
available shortly.

by S
develo

Seala ining Other Locations
5tal::-le ct Oriented Meets Functional

msterdam 14-15 October 2010, Xebia

mainta - — — Hegistration and Course Description

London 8-T December 2010, Skills Matter
To do this, Scala Solutions has brought together an cutstanding technical team Registration and Course Description
that has a passicn for programming, tekes pride in providing guality applications b Paris, 31 January - 1 Februany 2011, Xebia

and is l=d by people who have unrivalled sxpertise in the fizld of professicnal
Scala development. We want to maks great tools for developers whether

professional or just because they enjoy using Scals. Products
Many companies are already using Scala for mission oitical applications and many ¥ Migration Manager
more are on the way. People depend on Scala. Mow you can depend on Scala b Stable Versions

Solutions to provide the developmeant products and essential support services you
nesd to be even mors sucoessful.
Consulting
If s=d i ttok , just call, Id &nj worki . .
you n our services or want to know more, just call, we would enjoy v ing y Qn-SHe Training

with wrn

Scala cheat sheet (1): Definitions

Scala method definitions:
def fun(x: Int): Int = {

result

}
or def fun(x: Int) = result

def fun = result

Scala variable definitions:

var x: Int = expression

val x: String = expression
Or var X = expression

val x = expression

Java method definition:

int fun(int x) {
return result;
}

(no parameterless methods)

Java variable definitions:

int x = expression

final String x = expression

61

Scala cheat sheet (2): Expressions

Scala method calls:

obj.meth(arg)
or obj meth arg

Scala choice expressions:

if (cond) exprl else expr2

expr match {
case pat; => expr,;

case pat, => expr,

¥

Java method call:

obj.meth(arg)
(no operator overloading)

Java choice expressions, stats:

cond ? exprl : expr2

if (cond) return expri;
else return expr2;

switch (expr) {
case pat; : return expr

case pat, : return expr
} // statement only

15

n J

@‘Scala

62

Scala cheat sheet (3): Objects and Classes

Scala Class and Object

class Sample(x: Int) {
def instMeth(y: Int) = x + y

}

object Sample {
def staticMeth(x:Int, y:Int)
=X*y

@‘Scala

Java Class with static

class Sample {

final int x;
Sample(int x) {

this.x = x

}

int instMeth(int y) {
return x + y;

}

static

int staticMeth(int x,int y) {
return x * y;

}

}

63

Scala cheat sheet (4): Tralts

Scala Trait

trait T {
def absMeth(x:String):String

def concreteMeth(x: String) =
x+field

var field = “I1”

Scala mixin composition:

class C extends Super with T

Java Interface

interface T {
String absMeth(String x)

(no concrete methods)

(no fields)
}

Java extension + implementation:

class C extends Super
implements T

@‘Scala

64

