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Introducing Spring Roo
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Mission Statement

Roo's mission is to fundamentally 
and sustainably improve Java® 
developer productivity without 
compromising engineering integrity 
or flexibility

“
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End User's Description

Roo is a little genie who sits in the 
background and handles the things I 
don't want to worry about

“



66

What Is Spring Roo?

 Easy-to-use, extensible, text-based RAD tool for Java® developers

 Development-time only (no runtime, no lock-in)
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Rapid Delivery

 Java® Platform

• Java 5+

• Java Bean Validation

• Java Database Connectivity

• Java Message Service

• Java Transaction API

• Java Server Pages

• Java Persistence API

 JPA Implementations

• Hibernate

• Apache OpenJPA

• EclipseLink

• Google App Engine (Data Nucleus)

 Java® Servlet Technologies

• Jetty

• Apache Tomcat

• Apache Tiles

• Apache Solr

• Spring MVC

• Spring Web Flow

• Web Application Resource (WARs)

 Popular Open Source Libraries

• Apache Maven, Google Web Toolkit, 
Adobe Flex, Dojo Toolkit, Apache 
ActiveMQ, Log4J, Eclipse, Selenium, 
JUnit, AspectJ, Spring Platform...
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User's Project

.properties.jspx.xml

@Roo 
Annotations

Spring Roo InfrastructureSpring Roo Infrastructure

Implementation Overview

provide

source only
retention

monitor and
change

Roo Add-Ons

.java.aj

SpringSource 
Tool Suite

CLI Shell
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Code Generation

 Roo is a “hybrid” code generator

• It selectively merges the best of the passive and active generation models

 Passive generation

• Passive generation is a one-time generation (eg IDE “generate getters/setters”)

• Roo performs passive generation in response to your shell commands

• Passively-generated files are very small and are easily edited in your IDE

 Active generation

• Active generation automatically updates certain files as you work on a project

• We've probably all used at least one badly-written active code generator

• Special build scripts, unnatural type models, lock-in, weird templates, crude output etc

• Roo overcomes these problems and makes active generation elegant...
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AspectJ ITDs

Elegant Active Generation

read

write

Person.java

name:String

Person_Roo_
JavaBean.aj

getName():String
setName(String):void

Person_Roo_
ToString.aj

toString():String

Person.class

name:String
toString():String

getName():String
setName(String):void

AspectJ
Compiler

Roo Add-Ons

 Small, intention-revealing .java files

 Java features like code assist, static typing etc

 Normal .class files at runtime

readwrite

read
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Demo

Building a Web Application
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Conventions and IDE Support
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Getting Started

 Minimum Requirements

• Java 5+

• Maven 2.2+

• Tested with Windows (including Cygwin), OSX and Linux

 Recommendations

• IDE: SpringSource Tool Suite

• OSX Users: iTerm (better ANSI support)

 Installation

• Download  www.springsource.org/roo, unzip and add to your path

• Spring Roo is also pre-installed in SpringSource Tool Suite

http://www.springsource.org/roo
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IDE Interoperability

 You can use Spring Roo without any IDE

• Roo directly parses .java source files (no compiler step is needed)

 For the best IDE experience, install your IDE's AspectJ plugin

• Eclipse users can add the Eclipse AspectJ Development Tools (AJDT) plugin

• IntelliJ users have AspectJ support available (see ticket IDEA-26959)

 Load Roo in a separate window while using your IDE

• This allows Roo to discover file changes

• If you forget to load Roo, it will automatically “catch up” when you next load it

 SpringSource Tool Suite has extra Roo-specific features

• Such as embedded Roo, so STS users don't need not load Roo separately

http://www.eclipse.org/ajdt/
http://youtrack.jetbrains.net/issue/IDEA-26959
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User Interface Conventions

 Usability tips

• Press TAB to complete

• TAB also displays option help (eg --foo)

• Failures automatically rollback changed files

• Commands never prompt you for further information once invoked

 Useful commands

• “hint” for step-by-step advice

• “help” for detailed information about any command

 There is a “flash notification area” in the top-right corner of the shell

• Long running operations

• Low-level diagnostic information if activated



1616

File Conventions in Spring Roo 1.1.0

 By default you are responsible for all files in your project

• You can use a text editor or IDE to change any file at any time

 Automatically managed files

• *.jspx files: edited automatically (your changes are automatically preserved)

• *_Roo_*.aj files: edited automatically (do not edit these files yourself)

• *Record.java files: edited automatically (do not edit these files yourself)

 You shouldn't need to edit the AJ and Record files

• Use “push in refactor” (or copy and paste) to move content to .java

• Record files are used by the GWT add-on to represent your member structure 
for GWT and as such do not contain any behavior or content you'd need to edit
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Project Defaults

 Maven 2

• Standard Maven directory structure (src/main/java etc)

• Automatically adds correct plugins for AspectJ weaving etc

• Projects start as a “jar” type, but become “war” once you add a web tier

• Compatible with m2eclipse

• Multi-project support will be added to Spring Roo 1.2 (see ROO-120)

 Project Footprint

• AspectJ and Spring are the only defaults (used for AOP and IoC respectively)

• Everything else is optional and added only when you ask

• You decide which JPA provider (if any) you'd like to use

• You decide which web tiers (if any) you'd like to use (Spring MVC, GWT, Flex etc)

• Even a “full” enterprise web app WAR is ~13 Mb (quite small by 2010 standards)

https://jira.springsource.org/browse/ROO-120
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Demo

Exploring IDE Support and Conventions
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Advanced Features
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What Is Database Reverse Engineering?

 Producing a Java tier from an existing relational schema

 Very commonly performed

 Eclipse has a “JPA entities from tables” wizard

• Generates entities from a JDBC connection

• Can be tailored to change generated type and field names

• Does not handle tables with no primary keys

 JPA implementations also offer this feature
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 Complex and long-winded wizard style interactions

• Is that a many-to-one, which side is the owner, which inheritance strategy...?

 May produce files with JPA implementation-specific annotations

• Locking you into that JPA provider

 Java files become cluttered with noisy JPA declarations

• These auto-generated and thus inferable declarations belong elsewhere

 No incremental updates

• Application requires manual adjustment if the schema changes

• Or worse still, deleting the entities and starting again

Limitations of Existing DBRE Tools
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Roo’s Incremental Database Reverse Engineering

 Most requested feature in history of Roo

 Quality reverse engineering

• Places declarations in ITDs, keeping your Java files clutter-free

• 100% JPA 2 annotations (no JPA implementation-specific annotations)

• Fine with large schemas (400+ tables), handles complex PKs/FKs etc

 Easy to use

• Just one command does it, and there are zero questions to answer

• Add a Spring MVC web tier for the new entities in just one more command

 Incrementally updates your domain model as schema evolves

• At last, Java type safety based on an evolving database schema
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DBRE Commands

 database introspect --schema <name> [--file <name>]

• This command is optional – it's mostly for testing the connection

• Displays database metadata in XML format in the Roo shell

• Optional --file <file name> saves metadata to specified file

• Provides a preview of the mappings used in the final model

 database reverse engineer [--schema <name>] [--package <name>]

• This is the main command

• Creates entities in the specified package

• --schema and --package options required only for first time run of command

• Automatically generates type and field names from table and column names

• In Roo 1.1.1 there is now an --excludeTables option with wildcard support
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Web Tier Support

 Spring MVC

• Mature and popular add-on

• Full .jspx round-tripping, REST (with JSON), JavaScript tag library and more

• Use “web mvc embed” if you'd like social media content from 16 sites including 
YouTube, Vimeo, Screenr, Flikr, Picasa, SlideShare, Google Maps, Twitter etc

 GWT

• Extensive and ongoing collaboration with the Google GWT team

• Uses new features in GWT 2.1 including RequestFactory for optimised remoting

 Adobe Flex

• Available as a separate Roo add-on, with full ActionScript and Java services

 Community projects building add-ons for Vaadin, Wicket and JSF
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Add-On Infrastructure

 Spring Roo is built on OSGi to enable anyone to write new features

 OBR allows Roo to automatically discover and install new add-ons

• Try this: type “welcome” into a Roo shell and notice it suggests an add-on

• Every URL in the OBR index is published with the httppgp:// scheme

• Our RooBot tool maintains a central OBR index of all Roo add-ons

 PGP is used to deliver a decentralised trust model

• A httppgp:// URL will only download if a trusted key signed the resource

• Use “ppg list trusted keys” and “pgp status” to view your trust database

• Use “pgp trust” and “pgp untrust” to manage which keys you trust

 Summary: automatic add-on discovery with a robust trust model
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Internal Geeky Stuff...

 “development mode”

• Provides full exception traces

 “poll status”

• Prints file monitoring statistics

 “metadata status”

• Indicates metadata statistics

 “metadata trace”

• Lots of low-level notifications

 “osgi scr component list”

• Dig into the active OSGi components

 “process manager debug”

• Flashes system status messages

 “system properties”

• As provided by the JVM

 “help”

• Discover plenty of other goodies
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Removing Spring Roo

 It's easy to remove Spring Roo from your project

• Roo has no runtime portion to worry about

 Five minutes and it's gone

• Step 1: Use AJDT's “Push In Refactor” feature (relocates content from .aj files)

• Step 2: Remove the Roo annotation JAR entry from your pom.xml

• Step 3: Remove all the @Roo annotations (use a global find and replace)

 But you can change your mind again...

• You can still run Roo on your project again later and re-add the annotation JAR
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Demo

Database Introspection
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Roadmap and Resources
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Roo 1.1.0 Release

 Current release is Spring Roo 1.1.0.RELEASE

 Planned upcoming releases:

• 1.1.1 planned for 17 December 2010

• 1.1.x series in Q1 2011

• 1.2 milestones from March/April 2011

 GWT 2.1 releases have similar timing to maximize compatibility

 Roo 1.1 uses Spring 3.0.x GA
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Community Resources

 Home → http://www.springsource.org/roo

• Contains links to all other resources

 Forum → http://forum.springsource.org

• Roo team actively monitor forum and answer queries

 Issues → http://jira.springframework.org/browse/ROO

 Twitter → @SpringRoo

• Follow for updates, or include in tweets so we see them

http://www.springsource.org/roo
http://forum.springsource.org/forumdisplay.php?f=67
http://jira.springframework.org/browse/ROO
http://twitter.com/SpringRoo
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Conclusion

 Spring Roo delivers serious productivity gains to Java developers

 Highlights

• Popular, proven Java technologies you already know

• Easy to learn, easy to use, easy to extend

• Builds on Java's strengths

• Extreme performance

• No runtime, no lock-in, no risk

• Active, open source project and community

 Contact details: balex@vmware.com and @benalexau

mailto:balex@vmware.com
http://twitter.com/benalexau
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