
© 2010 SpringSource, A division of VMware. All rights reserved

Extreme Java Productivity –
Enterprise Applications in Just Minutes

Ben Alex, Senior Staff Engineer, SpringSource Division, VMware

222

 Introducing Spring Roo

 IDE Support and Conventions

 Advanced Features

 Roadmap and Resources

Agenda

33

Introducing Spring Roo

44

Mission Statement

Roo's mission is to fundamentally
and sustainably improve Java®
developer productivity without
compromising engineering integrity
or flexibility

“

55

End User's Description

Roo is a little genie who sits in the
background and handles the things I
don't want to worry about

“

66

What Is Spring Roo?

 Easy-to-use, extensible, text-based RAD tool for Java® developers

 Development-time only (no runtime, no lock-in)

77

Rapid Delivery

 Java® Platform

• Java 5+

• Java Bean Validation

• Java Database Connectivity

• Java Message Service

• Java Transaction API

• Java Server Pages

• Java Persistence API

 JPA Implementations

• Hibernate

• Apache OpenJPA

• EclipseLink

• Google App Engine (Data Nucleus)

 Java® Servlet Technologies

• Jetty

• Apache Tomcat

• Apache Tiles

• Apache Solr

• Spring MVC

• Spring Web Flow

• Web Application Resource (WARs)

 Popular Open Source Libraries

• Apache Maven, Google Web Toolkit,
Adobe Flex, Dojo Toolkit, Apache
ActiveMQ, Log4J, Eclipse, Selenium,
JUnit, AspectJ, Spring Platform...

88

User's Project

.properties.jspx.xml

@Roo
Annotations

Spring Roo InfrastructureSpring Roo Infrastructure

Implementation Overview

provide

source only
retention

monitor and
change

Roo Add-Ons

.java.aj

SpringSource
Tool Suite

CLI Shell

99

Code Generation

 Roo is a “hybrid” code generator

• It selectively merges the best of the passive and active generation models

 Passive generation

• Passive generation is a one-time generation (eg IDE “generate getters/setters”)

• Roo performs passive generation in response to your shell commands

• Passively-generated files are very small and are easily edited in your IDE

 Active generation

• Active generation automatically updates certain files as you work on a project

• We've probably all used at least one badly-written active code generator

• Special build scripts, unnatural type models, lock-in, weird templates, crude output etc

• Roo overcomes these problems and makes active generation elegant...

1010

AspectJ ITDs

Elegant Active Generation

read

write

Person.java

name:String

Person_Roo_
JavaBean.aj

getName():String
setName(String):void

Person_Roo_
ToString.aj

toString():String

Person.class

name:String
toString():String

getName():String
setName(String):void

AspectJ
Compiler

Roo Add-Ons

 Small, intention-revealing .java files

 Java features like code assist, static typing etc

 Normal .class files at runtime

readwrite

read

1111

Demo

Building a Web Application

1212

Conventions and IDE Support

1313

Getting Started

 Minimum Requirements

• Java 5+

• Maven 2.2+

• Tested with Windows (including Cygwin), OSX and Linux

 Recommendations

• IDE: SpringSource Tool Suite

• OSX Users: iTerm (better ANSI support)

 Installation

• Download www.springsource.org/roo, unzip and add to your path

• Spring Roo is also pre-installed in SpringSource Tool Suite

http://www.springsource.org/roo

1414

IDE Interoperability

 You can use Spring Roo without any IDE

• Roo directly parses .java source files (no compiler step is needed)

 For the best IDE experience, install your IDE's AspectJ plugin

• Eclipse users can add the Eclipse AspectJ Development Tools (AJDT) plugin

• IntelliJ users have AspectJ support available (see ticket IDEA-26959)

 Load Roo in a separate window while using your IDE

• This allows Roo to discover file changes

• If you forget to load Roo, it will automatically “catch up” when you next load it

 SpringSource Tool Suite has extra Roo-specific features

• Such as embedded Roo, so STS users don't need not load Roo separately

http://www.eclipse.org/ajdt/
http://youtrack.jetbrains.net/issue/IDEA-26959

1515

User Interface Conventions

 Usability tips

• Press TAB to complete

• TAB also displays option help (eg --foo)

• Failures automatically rollback changed files

• Commands never prompt you for further information once invoked

 Useful commands

• “hint” for step-by-step advice

• “help” for detailed information about any command

 There is a “flash notification area” in the top-right corner of the shell

• Long running operations

• Low-level diagnostic information if activated

1616

File Conventions in Spring Roo 1.1.0

 By default you are responsible for all files in your project

• You can use a text editor or IDE to change any file at any time

 Automatically managed files

• *.jspx files: edited automatically (your changes are automatically preserved)

• *_Roo_*.aj files: edited automatically (do not edit these files yourself)

• *Record.java files: edited automatically (do not edit these files yourself)

 You shouldn't need to edit the AJ and Record files

• Use “push in refactor” (or copy and paste) to move content to .java

• Record files are used by the GWT add-on to represent your member structure
for GWT and as such do not contain any behavior or content you'd need to edit

1717

Project Defaults

 Maven 2

• Standard Maven directory structure (src/main/java etc)

• Automatically adds correct plugins for AspectJ weaving etc

• Projects start as a “jar” type, but become “war” once you add a web tier

• Compatible with m2eclipse

• Multi-project support will be added to Spring Roo 1.2 (see ROO-120)

 Project Footprint

• AspectJ and Spring are the only defaults (used for AOP and IoC respectively)

• Everything else is optional and added only when you ask

• You decide which JPA provider (if any) you'd like to use

• You decide which web tiers (if any) you'd like to use (Spring MVC, GWT, Flex etc)

• Even a “full” enterprise web app WAR is ~13 Mb (quite small by 2010 standards)

https://jira.springsource.org/browse/ROO-120

1818

Demo

Exploring IDE Support and Conventions

1919

Advanced Features

2020

What Is Database Reverse Engineering?

 Producing a Java tier from an existing relational schema

 Very commonly performed

 Eclipse has a “JPA entities from tables” wizard

• Generates entities from a JDBC connection

• Can be tailored to change generated type and field names

• Does not handle tables with no primary keys

 JPA implementations also offer this feature

2121

 Complex and long-winded wizard style interactions

• Is that a many-to-one, which side is the owner, which inheritance strategy...?

 May produce files with JPA implementation-specific annotations

• Locking you into that JPA provider

 Java files become cluttered with noisy JPA declarations

• These auto-generated and thus inferable declarations belong elsewhere

 No incremental updates

• Application requires manual adjustment if the schema changes

• Or worse still, deleting the entities and starting again

Limitations of Existing DBRE Tools

2222

Roo’s Incremental Database Reverse Engineering

 Most requested feature in history of Roo

 Quality reverse engineering

• Places declarations in ITDs, keeping your Java files clutter-free

• 100% JPA 2 annotations (no JPA implementation-specific annotations)

• Fine with large schemas (400+ tables), handles complex PKs/FKs etc

 Easy to use

• Just one command does it, and there are zero questions to answer

• Add a Spring MVC web tier for the new entities in just one more command

 Incrementally updates your domain model as schema evolves

• At last, Java type safety based on an evolving database schema

2323

DBRE Commands

 database introspect --schema <name> [--file <name>]

• This command is optional – it's mostly for testing the connection

• Displays database metadata in XML format in the Roo shell

• Optional --file <file name> saves metadata to specified file

• Provides a preview of the mappings used in the final model

 database reverse engineer [--schema <name>] [--package <name>]

• This is the main command

• Creates entities in the specified package

• --schema and --package options required only for first time run of command

• Automatically generates type and field names from table and column names

• In Roo 1.1.1 there is now an --excludeTables option with wildcard support

2424

Web Tier Support

 Spring MVC

• Mature and popular add-on

• Full .jspx round-tripping, REST (with JSON), JavaScript tag library and more

• Use “web mvc embed” if you'd like social media content from 16 sites including
YouTube, Vimeo, Screenr, Flikr, Picasa, SlideShare, Google Maps, Twitter etc

 GWT

• Extensive and ongoing collaboration with the Google GWT team

• Uses new features in GWT 2.1 including RequestFactory for optimised remoting

 Adobe Flex

• Available as a separate Roo add-on, with full ActionScript and Java services

 Community projects building add-ons for Vaadin, Wicket and JSF

2525

Add-On Infrastructure

 Spring Roo is built on OSGi to enable anyone to write new features

 OBR allows Roo to automatically discover and install new add-ons

• Try this: type “welcome” into a Roo shell and notice it suggests an add-on

• Every URL in the OBR index is published with the httppgp:// scheme

• Our RooBot tool maintains a central OBR index of all Roo add-ons

 PGP is used to deliver a decentralised trust model

• A httppgp:// URL will only download if a trusted key signed the resource

• Use “ppg list trusted keys” and “pgp status” to view your trust database

• Use “pgp trust” and “pgp untrust” to manage which keys you trust

 Summary: automatic add-on discovery with a robust trust model

2626

Internal Geeky Stuff...

 “development mode”

• Provides full exception traces

 “poll status”

• Prints file monitoring statistics

 “metadata status”

• Indicates metadata statistics

 “metadata trace”

• Lots of low-level notifications

 “osgi scr component list”

• Dig into the active OSGi components

 “process manager debug”

• Flashes system status messages

 “system properties”

• As provided by the JVM

 “help”

• Discover plenty of other goodies

2727

Removing Spring Roo

 It's easy to remove Spring Roo from your project

• Roo has no runtime portion to worry about

 Five minutes and it's gone

• Step 1: Use AJDT's “Push In Refactor” feature (relocates content from .aj files)

• Step 2: Remove the Roo annotation JAR entry from your pom.xml

• Step 3: Remove all the @Roo annotations (use a global find and replace)

 But you can change your mind again...

• You can still run Roo on your project again later and re-add the annotation JAR

2828

Demo

Database Introspection

2929

Roadmap and Resources

3030

Roo 1.1.0 Release

 Current release is Spring Roo 1.1.0.RELEASE

 Planned upcoming releases:

• 1.1.1 planned for 17 December 2010

• 1.1.x series in Q1 2011

• 1.2 milestones from March/April 2011

 GWT 2.1 releases have similar timing to maximize compatibility

 Roo 1.1 uses Spring 3.0.x GA

3131

Community Resources

 Home → http://www.springsource.org/roo

• Contains links to all other resources

 Forum → http://forum.springsource.org

• Roo team actively monitor forum and answer queries

 Issues → http://jira.springframework.org/browse/ROO

 Twitter → @SpringRoo

• Follow for updates, or include in tweets so we see them

http://www.springsource.org/roo
http://forum.springsource.org/forumdisplay.php?f=67
http://jira.springframework.org/browse/ROO
http://twitter.com/SpringRoo

3232

Conclusion

 Spring Roo delivers serious productivity gains to Java developers

 Highlights

• Popular, proven Java technologies you already know

• Easy to learn, easy to use, easy to extend

• Builds on Java's strengths

• Extreme performance

• No runtime, no lock-in, no risk

• Active, open source project and community

 Contact details: balex@vmware.com and @benalexau

mailto:balex@vmware.com
http://twitter.com/benalexau

	Title
	Agenda
	Topic Title
	Quote
	Slide 5
	Slide 6
	Two Column Slide
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

