
Erik Meijer

Gavin Bierman
Microsoft Research Cambridge

Microsoft SQL Server

Towards
a mathematical

model
for noSQL

NoSQL Took Away The Relational
Model And Gave Nothing Back

Benjamin Black
10/26/2010 Palo Alto NoSQL meetup

What he meant:

NoSQL systems are lacking a standard model
for describing and querying. Developing one
should be a high priority task.

noSQL
is dual to

SQL

Objects
Tables

vs

Objects
I do consider assignment statements
and pointer variables to be among
computer science's most valuable
treasures.

Donald Knuth
Image

of
Donald Knuth

class Product
{

string Title;
string Author;
int Year;
int Pages;
IEnumerable<string> Keywords;
IEnumerable<string> Ratings;

}

var _1579124585 = new Product
{

Title = “The Right Stuff”,
Author = “Tom Wolfe”,
Year = 1979,
Pages = 304,
Keywords = new[]{ “Book”, “Hardcover”, “American” },
Ratings = new[]{ “****”, “4 stars” },

}

var Products = new[]{ _1579124585 };

Amazon SimpleDB
Sample Query Dataset

Title Author Year Pages Keywords Ratings

1979 320

Chars

The Right Stuff

Chars

Tom Wolfe

Chars

Chars

4 stars

Chars

Book

Chars

Hardcover

Chars

American

0 1 2

0 1

0

var q = from product in Products
where product.Ratings.Any(rating => rating == “****”)
select new{ product.Title, product.Keywords };

Title Keywords

Chars

Book

Chars

Hardcover

Chars

American

0 1 2

Chars

The Right Stuff

0

Tables
The relational model is a particularly suitable
structure for the truly casual user (i.e., a non-
technical person who merely wishes to
interrogate the database, for example a
housewife who wants to make enquiries about
this week's best buys at the supermarket). In the
not too distant future the majority of computer
users will probably be at this level.

C.J. Date & E.F. Codd
Image of
C.J. Date

JOE CELKO’S
TREES AND
HIERACHIES
IN SQL FOR
SMARTIES

JOE CELKO’S
SQL FOR

SMARTIES
advanced SQL
Programming
Third Edition

Image
Of

Joe Celko

http://troels.arvin.dk/db/rdbms/links/#hierarchical

http://troels.arvin.dk/db/rdbms/links/#hierarchical

table Products
{

int ID;
string Title;
string Author;
int Year;
int Pages;

}

table Keywords
{

int ID;
string Keyword;
int ProductID;

}

table Ratings
{

int ID;
string Rating;
int ProductID;

}

Products.Insert
(1579124585
, “Tom Wolfe”
, 1979
, 304
);

Keywords.Insert
(4711
, “Book”
, 1579124585
);

Keywords.Insert
(1843
, “Hardcover”
, 1579124585
);

Keywords.Insert
(2012
, “American”
, 1579124585
);

Ratings.Insert
(787
, “****”
, 1579124585
);

Ratings.Insert
(747
, “4 stars”
, 1579124585
);

In SQL rows
are not expressible

ID Title Author Year Pages

1579124585 The
Right
Stuff

Tom
Wolfe

1979 304

ID Keyword ProductID

4711 Book 1579124585

1843 Hardcover 1579124585

2012 American 1579124585

ID Rating ProductID

787 **** 1579124585

747 4 stars 1579124585

Pr
od

uc
ts

Ke
yw

or
ds

Ra
ti

ng
s

Referential Integrity

ID Title Author Year Pages

1579124585 The
Right
Stuff

Tom
Wolfe

1979 304

ID Rating ProductID

787 **** 1579124585

747 4 stars 1579124585

Foreign key
must have corresponding
primary key

Primary key
must be unique

Maintained by the environment

var q = from product in Products
from rating in Ratings
where product.ID == rating.ProductId

&& rating == “****”
from keyword in Keywords
where product.ID == keyword.ProductID
select new{ product.Title, keyword.Keyword };

Title Keyword

The Right Stuff Book

The Right Stuff Hardcover

The Right Stuff Americanvar q = from product in Products
join rating in Ratings
on product.ID equals rating.ProductId
where rating == “****”
select product into FourStarProducts
from fourstarproduct in FourStarProducts
join keyword in Keywords
on product.ID equals keyword.ProductID
select new{ product.Title, keyword.Keyword };

In mathematics, semantics,
and philosophy of language, the Principle
of Compositionality is the principle that
the meaning of a complex expression is
determined by the meanings of its
constituent expressions and the rules
used to combine them.

Gottlob Frege 1848-1925 Image of
Gottlob Frege

Objects

Tables

Fully compositional

value ::= scalar
new { … , name = value, … }

Non compositional

value ::= new { … , name = scalar, … }

Tables
Non compositional

Query results denormalized
Query can only return single table
No recursion (but have CTEs)

NULL semantics a mess

Sum(1,NULL) = 1
1+NULL = NULL

Impedance Mismatch
The problem with having two languages is
“impedance mismatch ” One mismatch is conceptual
-the data language and the programming languages
might support widely different programming
paradigms. [...] The other mismatch is structural -the
languages don’t support the same data types, [...]

George Copeland & David Maier 1984
Image of

David Maier

The "relational" data model, enunciated by Ted Codd in
a landmark 1970 article, was a major advance over
DBTG. The relational model unified data and metadata
so that there was only one form of data representation.
It defined a non-procedural data access language based
on algebra or logic. It was easier for end-users to
visualize and understand than the pointers-and-records-
based DBTG model. Programs could be written in terms
of the "abstract model" of the data, rather than the
actual database design; thus, programs were insensitive
to changes in the database design.

Jim Gray
Image of
Jim Gray

Codd's relational theory dressed up these concepts with
the trappings of mathematics (wow, we lowly Cobol
programmers are now mathematicians!) by calling
files relations, records rows, fields domains,
and merges joins.
Computing history will consider the past 20 years as a
kind of Dark Ages of commercial data processing in
which the religious zealots of the Church of Relationalism
managed to hold back progress until a Renaissance
rediscovered the Greece and Rome of pointer-based
databases. Database research has produced a number of
good results, but the relational database is not one of
them.

Henry G. Baker

Image of
Henry
Baker

LINQ to SQL provides a runtime infrastructure
for managing relational data as objects without
losing the ability to query. Your application is
free to manipulate the objects while LINQ to
SQL stays in the background tracking your
changes automatically.

LINQ to SQL MSDN documentation

When one takes a look at the amount of
code that the average application
developer must write to address the
impedance mismatch across various data
representations (for example objects and
relational stores) it is clear that there is an
opportunity for improvement.

Entity Framework MSDN documentation

[Table(name=“Products”)]
class Product
{

[Column(PrimaryKey=true)]int ID;
[Column]string Title;
[Column]string Author;
[Column]int Year;
[Column]int Pages;

private EntitySet<Rating> _Ratings;
[Association(Storage="_Ratings"
, ThisKey=“ID”, OtherKey=“ProductID“
, DeleteRule=“ONDELETECASCADE”)]
ICollection<Rating> Ratings{ … }

private EntitySet<Keyword> _Keywords;
[Association(Storage="_Keywords",
, ThisKey=“ID”, OtherKey=“ProductID“,
, DeleteRule=“ONDELETECASCADE”)]
ICollection<Keyword> Keywords{ … }

}

[Table(name=“Keywords”)]
class Keyword
{

[Column(PrimaryKey=true)]int ID;
[Column]string Keyword;
[Column(IsForeignKey=true)]int ProductID;

}

[Table(name=“Ratings”)]
class Rating
{

[Column(PrimaryKey=true)]int ID;
[Column]string Rating;
[Column(IsForeignKey=true)]int ProductID;

}

And we did not even talk about inheritance yet.

var q = from product in Products
from rating in Ratings
where product.ID == rating.ProductId

&& rating == “****”
from keyword in Keywords
where product.ID == keyword.ProductID
select new{ product.Title, keyword.Keyword };

var q = from product in Products
where product.Ratings.Any(rating => rating.Rating == “****”)
select new{ product.Title, product.Keywords };

ID Title

1579124585 The
Right
Stuff

ID Keyword ProductID

4711 Book 1579124585

1843 Hardcover 1579124585

2012 American 1579124585

Indexes
Recover
Nesting

ID Title Author Year Pages

1579124585 The
Right
Stuff

Tom
Wolfe

1979 304

ID Keyword ProductID

4711 Book 1579124585

1843 Hardcover 1579124585

2012 American 1579124585

ID Rating ProductID

787 **** 1579124585

747 4 stars 1579124585

ID from rating in Ratings
where ID = rating.ID
select rating.ID

1579124585 787 747

from keyword in Keywords
where ID = keyword.ID
select keyword.ID

4711 1843 2012

ID Title Author Year Pages

1579124585 The
Right
Stuff

Tom
Wolfe

1979 304

ID Keyword ProductID

4711 Book 1579124585

1843 Hardcover 1579124585

2012 American 1579124585

ID Rating ProductID

787 **** 1579124585

747 4 stars 1579124585

Keywords

4711 1843 2012

Ratings

787 747

Normalization is
for Sissies

Ad-hoc queries

from p1 in Products
from p2 in Products
where p1.Title.Length == p2.Author.Length
select new{ p1, p2 };

Does not really work:
O(n2)
No referential integrity

Pat Helland Image of
Pat

Helland

Ad-hoc queries
don’t scale

from p1 in WWW
from p2 in WWW
where p2.Contains(p1.URL)
select new{ p1, p2 };

Sorting the whole Web
Might be a bit of a challenge

App Developer

Database Implementer

Recover original hierarchical structure
from normalized data

Recover original hierarchical structure
from normalized data

Designer
Remove original hierarchical structure
into normalized data

PEACE
not WAR

http://en.wikipedia.org/wiki/Math_Rescue

Title Author Year Pages Keywords Ratings

1979 320

Chars

The Right Stuff

Chars

Tom Wolfe

Chars

Chars

4 stars

Chars

Book

Chars

Hardcover

Chars

American

0 1 2

0 1

0

http://en.wikipedia.org/wiki/Math_Rescue

Title Author Year Pages Keywords Ratings

The
Right
Stuff

Tom
Wolfe

1979 320

Chars

Chars

4 stars

Chars

Book

Chars

Hardcover

Chars

American

ignore identity of collections

ID Title Author Year Pages

1579124585 The
Right
Stuff

Tom
Wolfe

1979 304

ID Keyword ProductID

4711 Book 1579124585

1843 Hardcover 1579124585

2012 American 1579124585

ID Rating ProductID

787 **** 1579124585

747 4 stars 1579124585

ID Title Author Year Pages

1579124585 The
Right
Stuff

Tom
Wolfe

1979 304

ID Keyword ProductID

4711 Book 1579124585

1843 Hardcover 1579124585

2012 American 1579124585

ID Rating ProductID

787 **** 1579124585

747 4 stars 1579124585

Draw
relationships
as arrows

Spot the differences

• Arrows are reversed
• Identity extensional/intensional

S T

TS

f

f

ForeignKey(f,s) = PrimaryKey(t)

Address(s) = Property(f,t)

pk

addr:

In logic and mathematics, an intensional definition
gives the meaning of a term by specifying all the
properties required to come to that definition,
that is, the necessary and sufficient conditions for
belonging to the set being defined.

An extensional definition of a concept or term
formulates its meaning by specifying its extension,
that is, every object that falls under the definition
of the concept or term in question.

Objects
A memory location contains an object
A pointer is the memory location of some object
Memory location is not part of the object

Rows
A row has a primary key
A foreign key is the value of a primary key
Primary key is part of a row

K

K

pk

fk

c

subject verb direct object

subject verb direct object

Relational Algebra
Algebraic: Table⋈Table à Table

Join constructs new row by
combining other rows

⋈ =pk fk

Object CoAlgebra
coAlgebraic: Object•MemberàObject*

Member access destructs existing
object into constituent objects

.c =

Key-Value Store
Is Dual To

Primary/Foreign-key
Store

noSQL
is

coSQL
noSQL and SQL are not in conflict,
like good and evil.

They are two opposites
that co-exist in harmony
and can transmute into each other.

Like yin (open è noSQL)
and yang (closed è SQL).

Consequences of Duality
If a statement T is true in C
Then its dual co(T) is true in co(C)

SQL coSQL

Children point to parents Parents point to children

Closed world Open world

Entities have identity
(extensional)

Environment determines
identity (intensional)

Synchronous (ACID) Asynchronous (BASE)

Environment coordinates
changes (transactions)

Entities responsible to react to
changes (eventually consistent)

Not compositional Compositional

Query optimizer Developer/pattern

PK

13

42

PK FK

A 13

B 13

C 42

Open world
Cannot join, build indexes
Cannot coordinate transactions
Cannot maintain referential integrity

Pre-computed indexes
Eventually consistent
Weak pointers (expect 404)

F

Life beyond Distributed Transactions:
an Apostate’s Opinion

Entities are collections of named (keyed)
data which may be atomically updated
within the entity but never atomically
updated across entities.

Pat Helland

Domain ::= {Item; Row}*
Row ::= { …; Attribute = Value+; … }
Value ::= string | key

SimpleDB Datamodel

Title Author Year Pages Keywords Ratings

The
Right
Stuff

Tom
Wolfe

1979 320 Hardcover ****

American
4 stars

Book

Actual mathematical dual of
flat relational tables with scalars in columns

SimpleDB Downside
Title Author Year Pages Keywords Ratings

The
Right
Stuff

Tom
Wolfe

1979 320 Hardcover ****

American
4 stars

Book

No way to retrieve multi-valued attributes
using select query. Needs two round trips
(can batch writes).

sdb.GetAttributes(new GetAttributesRequest
{

AttributeName = {"Keyword", "Rating"},
DomainName="Books",
ItemName = “…itemName() from query …",

});

interface Storage {
readonly attribute unsigned long length;
getter DOMString key(in unsigned long index);
getter any getItem(in DOMString key);
setter creator void setItem(in DOMString key,

in any data);
deleter void removeItem(in DOMString key);
void clear();

}

HTML 5
Storage

Actual mathematical dual of
relational tables with blobs

What About
SQL

(the query language)

More
Category
Theory

Monads as Kleisli triples

select F(a,b)
from as as a
from bs as b
where P(a,b)

πF (σP (asXbs))

Turns pretty
Syntax

Into scary
math

Query Processor

What is the interface
that the relational algebra
implements?

We want to query both
SQL and noSQL using the
same query language

And every other data
source as well.

Picture of
Ted Codd

Picture of
Saunders Mac Lane

Sets à “Collections”
Tuples à “Generics”

∅ :: M<T>
∪ :: M<T>xM<T> àM<T>
{_} :: T àM<T>

σP :: M<T>x(Tàbool) àM<T>
πF :: M<T>x(TàS) àM<S>
X :: M<T>xM<S> àM<TxS>

Correlated Subqueries
SelectMany ::
M<T>x(TàM<S>)àM<S>

σP(as) =
as.SelectMany(λa à
P(a)?{a}: ∅)

Correlated Subqueries

πF(as) =
as.SelectMany(λaà{F(a)})

as X bs =
as.SelectMany(λaà
σλb à (a,b)(bs))

One important twist

Intensional
representation
of code

SelectMany ::
M<T>
X
(Expr<TàM<S>>)
à
M<S>

Picture of
Alan Turing

Recognize the Monads?
M<_> à Functor
SelectMany à bind
{_} à return/η

µ :: M<M<T>> àM<T>
µ tss = tss.SelectMany(λtsàts)

LINQ == Monads
Syntactic sugar for monad
comprehensions

Data source “implements” monadic
interface (pattern)

One query syntax over multiple data
models

coSQL naturally allows extreme
horizontal partitioning

0...99 100...199 200...299∪∪

A function
h :: M<A> à B

is a homomorphism wrt to ∪ iff
h = (⊕/) • (f*) -- “/” is reduce, “*” is map

for some
f :: A à B

and
⊕ :: BxB à B

Bird’s First Homomorphism Lemma
1987

For the rest of us
Every LINQ query can be
executed as a MapReduce
computation

Picture of
Richard

Bird

Google's MapReduce
Programming Model --
Revisited

class MapReduce<k1, k2, v1, v2, v3>
{

IEnumerable<KeyValuePair<k2, v2>> Map(k1 Key, v1 Value);
v3 Reduce(k2 Key, IEnumerable<v2> Values);

IEnumerable<KeyValuePair<k2, v3>> MapReduce
(IEnumerable<KeyValuePair<k1, v1>> Input)
{...}

}

Picture of
Ralf Lämmel

DryadLINQ

We Are
Hiring

Category
TheoryD

at
ab

as
es LINQ

D
is

tr
ib

ut
ed

Sy

st
em

s

Functional Programming

H
ac

ke
r

Business

