

Towards a mathematical model for noSQL

NoSQL Took Away The Relational Model And Gave Nothing Back

Benjamin Black 10/26/2010 Palo Alto NoSQL meetup

What he meant:

NoSQL systems are lacking a standard model for describing and querying. Developing one should be a high priority task.

Objects Tables

Tables

The relational model is a particularly suitable structure for the truly casual user (i.e., a nontechnical person who merely wishes to interrogate the database, for example a housewife who wants to make enquiries about this week's best buys at the supermarket). In the not too distant future the majority of computer users will probably be at this level.

C.J. Date & E.F. Codd

Image of C.J. Date

table Products	Products.Insert	
	(1579124585	
int ID;	, "Tom Wolfe"	
string Title;	, 1979	
string Author;	, 304	
int Year;);	
int Pages;		Ratings.Insert
}	Keywords.Insert	(787
,	(4711	<i>u</i> * * * * <i>n</i>
table Keywords	, "Book"	, 1579124585
	, 1579124585);
int ID;	, 1377124303 \.	Ratings.Insert
); Kasasanda kasasat	(747
string Keyword;	Keywords.Insert	, "4 stars"
int ProductID;	(1843	-
}	, "Hardcover"	, 1579124585
	, 1579124585);
table Ratings);	
{	Keywords.Insert	
int ID;	(2012	
string Rating;	, "American"	In SQL rows
int ProductID;	, 1579124585	are not expressible
	, 1379124303 \.	
3	Ji	

Referential Integrity Maintained by the environment

ID	Rating		ProductID		Foreign key
787	****	1	1579124585		must have corresponding
747	4 stars	1	1579124585		primary key
ID 1579124585	Title The Right	Author Tom Wolfe	Year 1979	Pages 304	Primary key must be unique

In mathematics, semantics, and philosophy of language, the Principle of Compositionality is the principle that the meaning of a complex expression is determined by the meanings of its constituent expressions and the rules used to combine them.

Gottlob Frege 1848-1925

Image of Gottlob Frege

Objects

Fully compositional

```
value ::= scalar
    new { ... , name = value, ... }
```

Tables

Non compositional

value ::= new { ... , name = scalar, ... }

Tables

Non compositional

Query results denormalized Query can only return single table No recursion (but have CTEs)

NULL semantics a mess

Sum(1,NULL) = 1 1+NULL = NULL

Impedance Mismatch

The problem with having two languages is "impedance mismatch " One mismatch is conceptual -the data language and the programming languages might support widely different programming paradigms. [...] The other mismatch is structural -the languages don't support the same data types, [...]

George Copeland & David Maier 1984

Image of David Maier

The "relational" data model, enunciated by Ted Codd in a landmark 1970 article, was a major advance over DBTG. The relational model unified data and metadata so that there was only one form of data representation. It defined a non-procedural data access language based on algebra or logic. It was easier for end-users to visualize and understand than the pointers-and-recordsbased DBTG model. Programs could be written in terms of the "abstract model" of the data, rather than the actual database design; thus, programs were insensitive to changes in the database design.

Jim Gray

Codd's relational theory dressed up these concepts with the trappings of mathematics (wow, we lowly Cobol programmers are now *mathematicians!*) by calling files *relations*, records *rows*, fields *domains*, and merges *joins*. Computing history will consider the past 20 years as a kind of Dark Ages of commercial data processing in which the religious zealots of the Church of Relationalism managed to hold back progress until a Renaissance rediscovered the Greece and Rome of pointer-based databases. Database research has produced a number of good results, but the relational database is not one of them.

Henry G. Baker

mage o Henry Baker LINQ to SQL MSDN documentation

LINQ to SQL provides a runtime infrastructure for managing relational data as objects without losing the ability to query. Your application is free to manipulate the objects while LINQ to SQL stays in the background tracking your changes automatically.

Entity Framework MSDN documentation

When one takes a look at the amount of code that the average application developer must write to address the impedance mismatch across various data representations (for example objects and relational stores) it is clear that there is an opportunity for improvement.

```
[Table(name="Products")]
class Product
{
  [Column(PrimaryKey=true)]int ID;
  [Column]string Title;
  [Column]string Author;
  [Column]int Year;
  [Column]int Pages;
  private EntitySet<Rating> _Ratings;
  [Association( Storage="_Ratings"
  , ThisKey="ID", OtherKey="ProductID"
  , DeleteRule="ONDELETECASCADE")]
  ICollection<Rating> Ratings{ ... }
  private EntitySet<Keyword> _Keywords;
  [Association( Storage="_Keywords",
  , ThisKey="ID", OtherKey="ProductID",
  , DeleteRule="ONDELETECASCADE")]
  ICollection<Keyword> Keywords{ ... }
}
```

```
[Table(name="Keywords")]
class Keyword
{
    [Column(PrimaryKey=true)]int ID;
    [Column[string Keyword;
    [Column(IsForeignKey=true)]int ProductID;
}
[Table(name="Ratings")]
class Rating
{
    [Column(PrimaryKey=true)]int ID;
    [Column[string Rating;
    [Column[sForeignKey=true)]int ProductID;
}
And we did not even talk about inheritance yet.
```


ID	Title	Author	Year	Pages		
1579124585	The Right Stuff	Tom Wolfe	1979	304		
ID		ting in Ratin D = rating.I[ating.ID) N	om keyv here ID elect key	= keywo	
1579124585	787	747		4711	1843	2012
ID	Key	yword		Product	ID	
4711	В	look	1	1579124585		
1843	Har	dcover	1	5791245		
2012	Am	erican	1	5791245		
ID	Rati	ing	Pi	ProductID		
787	***	**	15	7912458	5	

1579124585 The Tom 1979 304 4711 1843 2 Right Wolfe Stuff 787 747	2012
18/ /4/	
ID Keyword ProductID	
4711 Book 1579124585	
1843 Hardcover 1579124585	
2012 American 1579124585	
ID Rating ProductID	
787 **** 1579124585	
747 4 stars 1579124585	

Ad-hoc queries don't scale

from p1 in WWW
from p2 in WWW
where p2.Contains(p1.URL)
select new{ p1, p2 };

Sorting the whole Web Might be a bit of a challenge

Designer Remove original hierarchical structure into normalized data

App Developer Recover original hierarchical structure from normalized data

Database Implementer Recover original hierarchical structure from normalized data

PEACE not WAR

ID	Rat		Rating		ProductID		
787	****		*	1579124585			585
747		4 stars		1579124585			
	ID		Title	Author		Year	Pages
	Ri		The Right Stuff	Tom Wolfe		1979	304
ID		Кеу	word		ProductID		
4711		Boo	ok		1579124585		
1843		Har	dcover		1579124585		
2012	American		erican		1579124585		

65 387 347	Rating ++++ 4 stars	ProfuetC 1579124585 1579124585	The Root	Author Year Torn 1979 Molfe	Pages Revealed 820	th Mathiags
() () () () () () () () () () () () () (9124585 The Som Hight Wolk Staff Keyword Book Hardcover	1979 304	\sum	Dum American Dum Hantcover Osum Book	Ŋ	Charn: **** Chard: 4 stars
3013 • J	Arrow	s are	reve		/inte	nsional
- 1	uciili	LY CA	CHSIC	лат/		15101141

mathematics arrows reversed	Search
About 8,000,000 results (0.23 seconds) Ad	dvanced search
that in such a case the arrow of time will be re en.wikipedia.org/wiki/Entropy_(arrow_of_time Category (mathematics) - Wikiped) - Cached - Similar dia, the free encyclopedia 🔯
This is the central idea of category theory, a but the arrows are those of the original cate en wikipedia org/wiki/Category (mathemati	egory reversed
	egory reversed ics) - Cached - Similar

The definitions of categories and functors provide only the very basics of categorical algebra; additional important topics are listed below. Although there are strong interrelations between all of these topics, the given order can be considered as a guideline for further reading.

- * The functor category D^C has as objects the functors from C to D and as morphisms the natural transformations of such functors. The Yoneda lemma is one of the most famous basic results of category theory; it describes representable functors in functor categories.
- ⁻ Duality: Every statement, theorem, or definition in category theory has a *dual* which is essentially obtained by "reversing all the arrows". If one statement is true in a category *C* then its dual will be true in the dual category *C*^{op}. This duality, which is transparent at the level of category theory, is often obscured in applications and can lead to surprising relationships.
- Adjoint functors: A functor can be left (or right) adjoint to another functor that maps in the opposite direction. Such a pair of adjoint functors typically arises from a construction defined by a universal property; this can be seen as a more abstract and powerful view on universal properties.

mathematics extensional	×	Search
About 20,500,000 results (0.18 seconds)	LA .	neroed search
Showing results for mathematics extension. Search instead for mathematics	matics extensional	
Mathematics, Mathematics Extension 1, Mathematics Extension 2.		
Mar 19, 2010 Archived materia: A range of material was developed to assist with the		
implementation of the Mathematics, Mathematics Extension 1, _		
www.boardoistudies.nsw.edu.au/imathematics-adverced.html - Cachee - Similar		
Extension (mathematics) - Wikipedia, the free encyclopedia		
Extension (mathematics), From Vikipedia, the free encyclopedia, Jump to navigatio	0.3	
search in mathematics, the word "extension" has many uses. See		
Analysis - Algebra - Algebraic geometry - Logic / Set theory		
en.wikipedia.org/wikirExtension_(mathematics) - Cached - Similar		
Science 2009 Hsc Mathematics Extension 2 Marking Guidelines Te	m dr	
Sep 6, 2010 Mathematics Extension 2: techniques, results, and ideas creatively ac		
Mathematics, Mathematics Extension 1 and Mathematics Extension		
www.cyberessays.com/TermonMathematics-Extension/14302/- Cached		
analysis (mathematics) ; Extension of analytic concepts to *		
analysis (mathematics). Extension of analytic concepts to complex numbers, Britannia	ca	
Online Encyclopedia, Analytic concepts such as limits, derivatives,		
www.brtannica.com/ (Extension-of-analytic-concepts-to-complex-numbers - Cached	- Similar	
Mathematics - HSC Online 1		
Home > Mathematics, Extension 2 Extension 1 Mathematics General Mathema	tics	
General Mathematics: Proliminary Course, Financial Mathematics		
www.hac.csu.edu.au/matha/ - Cached - Similar		
Mathematics: Harvard Extension School		
Mathematics courses at Harvard Extension School in Cambridge, Massachusetts.		

In logic and mathematics, an *intensional* definition gives the meaning of a term by specifying all the properties required to come to that definition, that is, the necessary and sufficient conditions for belonging to the set being defined.

An *extensional* definition of a concept or term formulates its meaning by specifying its extension, that is, every object that falls under the definition of the concept or term in question.

Object CoAlgebra

coAlgebraic: Object•Memberà Object*

Member access *destructs* existing object into constituent objects

Coalgebras and Monads in the Semantics of Java*

Bart Jacobs and Erik Poll

noSQL is coSQL

noSQL and SQL are not in conflict, like good and evil.

They are two opposites that co-exist in harmony and can transmute into each other.

Like yin (open è noSQL) and yang (closed è SQL).

Consequences of Duality If a statement T is true in C Then its dual co(T) is true in co(C)

SQL	coSQL
Children point to parents	Parents point to children
Closed world	Open world
Entities have identity (extensional)	Environment determines identity (intensional)
Synchronous (ACID)	Asynchronous (BASE)
Environment coordinates changes (transactions)	Entities responsible to react to changes (eventually consistent)
Not compositional	Compositional
Query optimizer	Developer/pattern

Life beyond Distributed Transactions: an Apostate's Opinion

Entities are collections of named (keyed) data which may be atomically updated within the entity but never atomically updated across entities.

Pat Helland

HTML 5 interface Storge. readonly attrib getter DOM tring Rev long index); getter any getIten(in DOMstring key); setter creator void setIten(in DOMString key, in any data); deleter void removeItem(in DOMString key); void clear(); } Actual mathematical dual of relational tables with blobs

What About SQL (the query language)

More Category Theory

Monads as Kleisli triples

Rather than focusing on a specific T, we want to find the general properties common to all notions of computation, therefore we impose as only requirement that *programs* should form a category. The aim of this section is to convince the reader, with a sequence of informal argumentations, that such a requirement amounts to say that T is part of a Kleisli triple $(T, \eta, _^*)$ and that the category of programs is the Kleisli category for such a triple.

Definition 1.2 ([Man76]) A Kleisli triple over a category C is a triple $(T, \eta, _^*)$, where T: $Obj(C) \rightarrow Obj(C)$, $\eta_A: A \rightarrow TA$ for $A \in Obj(C)$, $f^*:TA \rightarrow TB$ for $f: A \rightarrow TB$ and the following equations hold:

- $\eta^*_A = \operatorname{id}_{TA}$
- $\eta_A; f^* = f \text{ for } f; A \rightarrow TB$
- f^{*}; g^{*} = (f; g^{*})^{*} for f: A → TB and g: B → TC.

A Kleisii triple satisfies the mono requirement provided η_A is mono for $A \in C$.

Intuitively η_A is the *inclusion* of values into computations (in several cases η_A is indeed a mono) and f^* is the *extension* of a function f from values to computations to a function from computations to computations, which first evaluates a computation and then applies f to the resulting value. In

Query P	rocessor
select F(a,b) from as as a from bs as b where P(a,b)	Turns pretty Syntax
π _F (σ _P (asXbs))	Into scary math

Sets à "Collections" Tuples à "Generics"

> Ø :: M<T> ∪ :: M<T>**x**M<T> à M<T> {_} :: T à M<T>

σ_P :: M<T>x(Tàbool) à M<T> π_F :: M<T>x(TàS) à M<S> X :: M<T>xM<S> à M<TxS>

Correlated Subqueries

```
SelectMany ::
M<T>x(TàM<S>)àM<S>
```

```
σ<sub>P</sub>(as) =
as.SelectMany(λa à
P(a)?{a}: Ø)
```

Correlated Subqueries

```
π<sub>F</sub>(as) =
as.SelectMany(λaà {F(a)})
```

```
as X bs =
as.SelectMany(λaà
σ<sub>λb à (a,b)</sub>(bs))
```


Recognize the Monads?

```
M<_> à Functor
SelectMany à bind
{_} à return/η
```

```
μ :: M<M<T>> à M<T>
μ tss = tss.SelectMany(λtsà ts)
```

LINQ == Monads

Syntactic sugar for monad comprehensions

Data source "implements" monadic interface (pattern)

One query syntax over multiple data models

We Are Hiring

