
 NEAL FORD software architect / meme wrangler

 ThoughtWorks®

 nford@thoughtworks.com
 3003 Summit Boulevard, Atlanta, GA 30319
 www.nealford.com
 www.thoughtworks.com
 blog: memeagora.blogspot.com
 twitter: neal4d

emergent design

1

www.ibm.com/developerworks/java/library/j-eaed1/
index.html?S_TACT=105AGX02&S_CMP=EDU

bit.ly/nf-ead-all
2

enablers

defining emergent design

obfuscaters

understanding design

harvesting idiomatic patterns

agenda

3

Prelude
4

There are known
unknowns.

That is to say there
are things that we
now know we don't

know.

But there are also
unknown

unknowns.

There are things
we do not know
we don't know.

5

up-front
design

fails
because

of
unknown
unknowns

6

the longer you can
wait, the better the

decision

time

knowledge / context

7

Emergent, a.
[L. emergens, p. pr. of emergere.]

 1. Rising or emerging out of a fluid
 or anything that covers or
 conceals; issuing; coming to light.
 [1913 Webster]

 2. Suddenly appearing; arising
 unexpectedly; calling for
 prompt action; urgent.
 [1913 Webster]

8

spectrum of design

“pure”
waterfall

cowboy
hacking

9

big design up front

Project Planning/Estimation

Requirements

Use Cases/
Functional Specs

Design
Specifications

Code

Test

Fix/Integrate $

10

who thought this was
a good idea?

11

12

13

emergent (hardware)
design

14

finding abstractions
& patterns

15

domain

patterns describe effective abstractions

patternsidiomatic

technical

validation
security
transactional data

Patterns

business rules
shared functionality

16

architecture

design
stuff that’s

hard to
change

later

as little of
that stuff as

possible

17

Emergent
 Design

18

what is software design?

Jack C. Reeves
fall 1992, c++ journal

http://www.developerdotstar.com/mag/articles/reeves_design.html

“what is software design?”

19

“The final goal of any
engineering activity is some

type of documentation”

“When the design effort is
complete, the design

documentation is turned over
to the manufacturing team.”

20

manufacturing for
physical things

21

software
manufacturing

compilation
22

design ==
complete source code

23

$$$software traditional
24

software designs are relatively
easy to turn out

Jack Reeves

“Given that

and essentially free to build,

an unsurprising revelation is
that software designs tend to
be incredibly large and
complex.”

25

26

27

28

29

30

“Software may be
cheap to build, but

it is incredibly
expensive to

design.”

Jack Reeves

31

Things that
Obscure
Emergent
Design

32

complexity

33

accidental
complexity
all the externally imposed
ways software becomes complex

essential
complexity
inherent complexity

VS

34

hunting
season

field level
security

EJB / Biztalk

essential accidental

examples

35

technical
 debt

36

technical debt

37

Code Base
Complexity principal

interest

effort for
new features

technical debt

38

tech debt quadrants
reckless prudent

deliberate

inadvertent

“We don’t have
time for design.”

“We must ship
now & deal with

the consequences.”

“What’s layering?”
“Now we know
how we should
have done it.”

39

demonstration trumps discussion

you must convince someone technical debt
exists...

...start a conversation about repayment

negotiating
repayment

40

cyclomatic complexity

measures complexity of a method/function

V(G)= e - n + 2
V(G) = cyclomatic complexity of G
e= # edges
n= # of nodes

ba
ck

gr
ou

nd
 in

fo

41

start

if (c1)

f1() f2()

if (c2)

f3() f4()

end

start

if (c1)

f1() f2()

if (c2)

f3() f4()

end

7

65

4

32

1

8

7

65

4

3

2

1

nodes

edges

ba
ck

gr
ou

nd
 in

fo

42

convincing metrics

43

sample instance (http://
nemo.sonarsource.org/)

open source

nice visualizations for common metrics

sonar

44

45

technical debt
calculator

duplications +
fix_violations +
comment_public_api +
fix_uncovered_complexity +
bring_complexity_below_threshold

debt =

46

time machine
(struts)

47

time machine
(spring batch)

48

motion chart

motion chart
49

rampant
genericness

50

increases software entropy

“if we build lots of layers for
extension, we can easily build more
onto it later”

generic obfuscation

accidental complexity

genericness

51

52

drowning in
layers

source: http://ptrthomas.wordpress.com/2006/06/06/
java-call-stack-from-http-upto-jdbc-as-a-picture/

53

Emergent
Design
Enablers

54

atomic understanding of intent

more about design than testing

design will emerge from tests

less accidental complexity

better abstractions

test driven design

55

perfect number
case study

∑ of the factors == number
(not including the number)

56

57

58

test-after

TDD

59

60

61

regularly fix obsolescent abstractions

collective code ownership

fix broken windows whenever you see
them

code should get stronger with age

refactoring

62

63

64

idiomatic “unit of
work” pattern

see the composed method pattern
Smalltalk Best Practice Patterns Kent Beck

65

Refactoring to
Harvest
Idiomatic
Patterns

66

class

afferent coupling

class

class

class class

class

class
1

2

3

6

5

4

ba
ck

gr
ou

nd
 in

fo

67

class

efferent coupling

class

class

class

class
1

2

4

3

ba
ck

gr
ou

nd
 in

fo

68

struts 2.x

69

UIBean evaluateParams()

70

evaluate.*Params ?

./org/apache/struts2/components/AbstractRemoteCallUIBean.java

./org/apache/struts2/components/Anchor.java

./org/apache/struts2/components/Autocompleter.java

./org/apache/struts2/components/Checkbox.java

./org/apache/struts2/components/ComboBox.java

./org/apache/struts2/components/DateTimePicker.java

./org/apache/struts2/components/Div.java

./org/apache/struts2/components/DoubleListUIBean.java

./org/apache/struts2/components/DoubleSelect.java

./org/apache/struts2/components/File.java

./org/apache/struts2/components/Form.java

./org/apache/struts2/components/FormButton.java

./org/apache/struts2/components/Head.java

./org/apache/struts2/components/InputTransferSelect.java

./org/apache/struts2/components/Label.java

./org/apache/struts2/components/ListUIBean.java

./org/apache/struts2/components/OptionTransferSelect.java

./org/apache/struts2/components/Password.java

./org/apache/struts2/components/Reset.java

./org/apache/struts2/components/Select.java

./org/apache/struts2/components/Submit.java

./org/apache/struts2/components/TabbedPanel.java

./org/apache/struts2/components/table/WebTable.java

./org/apache/struts2/components/TextArea.java

./org/apache/struts2/components/TextField.java

./org/apache/struts2/components/Token.java

./org/apache/struts2/components/Tree.java

./org/apache/struts2/components/UIBean.java

./org/apache/struts2/components/UpDownSelect.java

!

find . -name "*.java" | xargs grep -l "void evaluate.*Params"

71

extract the
embedded
framework

72

capturing idiomatic
patterns

73

most (useful)
frameworks collect
idiomatic patterns

74

APIs

75

idiomatic “unit of
work” pattern

76

Java

77

Groovy

78

Attributes

79

80

81

82

83

84

85

Sticky Attributes (Ruby)

86

limiting testing

87

conditional method
definition

88

attribute

89

using hook methods

90

attributes for cross-
cutting concerns

91

92

...you want the most expressive medium you
can find

a lot!

if code == design...

push for expressiveness

frequently meta-language nature

expressiveness matters

93

Struts

Ruby on Rails

expressiveness matters!

94

object-oriented

imperative

structured / modular

anti-objects

functional

abstraction styles

95

collaborative
 diffusion

96

“The metaphor of objects can go too
far by making us try to create objects
that are too much inspired by the real
world. “

“...an antiobject is a kind of object that
appears to essentially do the opposite
of what we generally think the object
should be doing.”

97

98

99

defer decisions to the last responsible moment

you don’t know what you don’t know

$$

harvest emergent design in concise ways

time spent early on design:

error prone

find idiomatic patterns

summary

100

This work is licensed under the Creative Commons
Attribution-Share Alike 3.0 License.

http://creativecommons.org/licenses/by-sa/3.0/us/

?’s
please fill out the session evaluations

samples at github.com/nealford

 NEAL FORD software architect / meme wrangler

 ThoughtWorks®

 nford@thoughtworks.com
 3003 Summit Boulevard, Atlanta, GA 30319
 www.nealford.com
 www.thoughtworks.com
 blog: memeagora.blogspot.com
 twitter: neal4d

101

