Technology Folklore

Martin Thompson - @mjpt777
http://mechanical-sympathy.blogspot.com/

A Question...

L &=

What is the most successful invention
in human history?

- & i -
.2 //5 o K) {
(o
2 15.

A Question...

The Scientific Method

e Characterization

 Hypothesis

* Deduction

e Experiment

Make a guess based on experience and observation

Propose an explanation

Make a prediction from the hypothesis

Test the prediction

Stand Back!
We’re going to try some science!

Myth - CPU performance has stopped increasing

Characterization: My computer is modern but my code is not noticeably faster

Hypothesis: We have reached the limits! CPU performance isn’t increasing anymore

Deduction: If this is the case then an algorithm run on the newest processors will
perform at roughly the same rate as on older processors

Experiment:

Myth - CPU performance has stopped increasing

Characterization
Hypothesis:

Deduction:

Experiment:

public class BruteForce
{
public static List<String> words(String s)

{

List<String> result = new ArrayList<String>();

inti = s.length();
int lastChar = -1;

while (i = -1)

{
if (lastChar == -1 && s.charAt(i) 1= "")

lastChar = i;
}
else if (lastChar = -1)

{
if (s.charAt(i)==""||i==0)

result.add(s.substring(i + 1, lastChar + 1));

lastChar = -1;
}
}
}

return result;

}
}

pbly faster.
t increasing anymore.

est processors will
SSors.

Myth - CPU performance has stopped increasing

Intel
Intel
Intel
Intel

Characterization: My computer is modern but my code is not noticeably faster
Hypothesis:

Deduction:

Experiment:

.~ S S~

R) Core 2 Duo(TM)
R) Xeon(R)

R) Core(TM)

R) Core(TM)

CPU P8600 @ 2.40GHz 1434
CPU E5620 @ 2.40GHz 1768
CPU i7-2677TM @ 1.80GHz 2202
CPU i7-2720QM @ 2.20GHz 2674

We have reached the limits! CPU performance isn’t increasing anymore

If this is the case then an algorithm run on the newest processors will
perform at roughly the same rate as on older processors

(2008)
(2009)
(2010)
(2010)

Myth - Go Parallel to scale - part |

Characterization: | can do more work by executing tasks in parallel

* Hypothesis: | can increase the rate at which | do work by increasing the number of
threads that | do work on
* Deduction: If this is the case then we should be able to measure higher throughput
as we add more threads
* Experiment: Let’s increment a 64-bit counter, a simple Java long, 500 million times...
Single thread 300
Single thread with lock 10,000
Two threads with lock 118,000
Single thread with CAS 9,700

Two threads with CAS 18,000

Myth - Go Parallel to scale - part Il

Characterization: | can do more work by executing tasks in parallel

Hypothesis: | can increase the rate at which | do work by increasing the number of
threads that | do work on

Deduction: If this is the case then we should be able to measure higher throughput
as we add more threads

Experiment:

Myth - Go Parallel to scale - part Il

° Characlu\—:—--l-lnn- l aoanm Ala maava vaiavl, vt Ao ibinnes danlin i mnavallal

+ Hypoth The Experiment: o
" Deduct From Guy Steele's talk at the Pt
+ Experir Strange Loop Conference

(http://www.infoq.com/presentations/Thinking-Parallel-Programming)

Tested with copy the text of ‘Alice in Wonderland’

Myth - Go Parallel to sc

Characterization: | can do more work b

H public class BruteForce

N | rase the rat
public static List<String> words(String s)
{ List<String> result = new ArrayList<String>(); at I d O WO rl

inti = s.length();
int lastChar = -1;

e case thel
more thre:

while (- 1= -1)

if (lastChar == -1 && s.charAt(i) I="")
{

lastChar = i;
e B)
else if (lastChar != -1)

if (s.charAt(i) ==""|| i==0)
result.add(s.substring(i + 1, lastChar + 1));
lastChar = -1;
}
}
}
return result;

}
}

package strings
object WordState {
def maybeWord(s:String) = if (s.isEmpty) FastList.empty[String] else FastList(s)
def processChar(c:Char): WordState = if (c !="") Chunk("" + c) else Segment.empty
def processChar2(a: WordState, c:Char): WordState = if (c !="'") a.assoc(c) else a.assoc(Segment.empty);
def compose(a: WordState, b: WordState) = a.assoc(b)

def wordsParallel(s:Array[Char]): FastList[String] = {

s.par.aggregate(Chunk.empty)(processChar2, compose).toList()
}

def words(s:Array[Char]) : FastList[String] = {
val wordStates = s.map(processChar).toArray
wordStates.foldRight(Chunk.empty)((x, y) => x.assoc(y)).toList()
}
}

trait WordState {
def assoc(other: WordState): WordState
def assoc(other: Char): WordState
def toList(): FastList[String]

case class Chunk(part: String) extends WordState {
override def assoc(other: WordState) = {
other match {
case c¢:Chunk => Chunk(part + c.part)
case s:Segment => Segment(part + s.prefix, s.words, s.trailer)
}
}

override def assoc(other: Char) = Chunk(part + other)

override def toList() = WordState.maybeWord(part)
}

object Chunk {
val empty:WordState = Chunk("")

}

case class Segment(prefix: String, words: FastList[String], trailer: String) extends WordState {
override def assoc(other: WordState) = {

other match {
case c:Chunk => Segment(prefix, words, trailer + c.part)
case s:Segment => Segment(prefix, words ++ WordState.maybeWord(trailer + s.prefix) ++ s.words, s.trailer)

}

override def assoc(other: Char) = Segment(prefix, words, trailer + other)
override def toList() = WordState.maybeWord(prefix) ++ words ++ WordState.maybeWord(trailer)

object Segment {
val empty:WordState = Segment("", FastList.empty[String], ")
}

Myth - Go Parallel to scale - part Il

Characterization: | can do more work by executing tasks in parallel

* Hypothesis: | can increase the rate at which | do work by increasing the number of
threads that | do work on
* Deduction: If this is the case then we should be able to measure higher throughput
as we add more threads
* Experiment:
Scala: Parallel Collections 61 400

Java: Imperative single threaded solution 33 1,600

Myth - Adding a batching algorithm
increases latency

Characterization: Adding a batching algorithm increases latency

Hypothesis: Waiting for the batch to fill will always add latency

Deduction: If this is the case then we can never exceed the maximum rate at which
a serial approach will work.

Experiment:

Myth - Adding a batching algorithm
increases latency

Characterization: Adding a batching algorithm increases latency

Hypothesis:

Deduction:

Experiment:

Send 10 concurrent messages to an 10
device with 100us latency

1. Batching can be implemented as a wait with a
timeout

2. Send what is available as soon as possible
then loop

{

naximum rate at which

Myth - Adding a batching algorithm
increases latency

Characterization: Adding a batching algorithm increases latency

* Hypothesis: Waiting for the batch to fill will always add latency
* Deduction: If this is the case then we can never exceed the maximum rate at which
a serial approach will work.
* Experiment:
Serial 100 500 1000
Batch Type 2 100 190 200

» Little’s Law comes into play on points of serialisation

My Top 10 Folklore

. Queues are way to pass events between threads
Domain models do not perform
Immutable objects & functional techniques will solve multi-core

SSDs are much faster than spinning disks

1
2
3
4
5. Operating system schedulers do the right thing
6. A local network hop is expensive

7. JDK Collection classes are high performance

8. Transactional systems need a relational database
9. TCP is the obvious protocol for communications
1

0. Short lived objects are free for garbage collection

Questions?

Blog: http://mechanical-sympathy.blogspot/

Twitter: @mjpt777

"The most amazing achievement of the computer software industry is its
continuing cancellation of the steady and staggering gains made by the
computer hardware industry.”

- Henry Peteroski

