
Martin Thompson - @mjpt777
http://mechanical-sympathy.blogspot.com/

Technology Folklore

A Question…

What is the most successful invention
in human history?

A Question…

What is the most successful invention
in human history?

The Scientific Method

• Characterization Make a guess based on experience and observation

• Hypothesis Propose an explanation

• Deduction Make a prediction from the hypothesis

• Experiment Test the prediction

Stand Back!
We’re going to try some science!

Myth – CPU performance has stopped increasing

•  Characterization: My computer is modern but my code is not noticeably faster

•  Hypothesis: We have reached the limits! CPU performance isn’t increasing anymore

•  Deduction: If this is the case then an algorithm run on the newest processors will
 perform at roughly the same rate as on older processors

•  Experiment: …

Myth – CPU performance has stopped increasing

•  Characterization: My computer is modern but my code is not noticeably faster.

•  Hypothesis: We have reached the limits! CPU performance isn’t increasing anymore.

•  Deduction: If this is the case then an algorithm run on the newest processors will
 perform at roughly the same rate as on older processors.

•  Experiment: …

public class BruteForce
{
 public static List<String> words(String s)
 {
 List<String> result = new ArrayList<String>();

 int i = s.length();
 int lastChar = -1;

 while (--i != -1)
 {
 if (lastChar == -1 && s.charAt(i) != ' ')
 {
 lastChar = i;
 }
 else if (lastChar != -1)
 {
 if (s.charAt(i) == ' ' || i == 0)
 {
 result.add(s.substring(i + 1, lastChar + 1));
 lastChar = -1;
 }
 }
 }

 return result;
 }
}

Myth – CPU performance has stopped increasing

Processor Name Model Operations/sec Release
Date

Intel(R) Core 2 Duo(TM) CPU P8600 @ 2.40GHz 1434 (2008)
Intel(R) Xeon(R) CPU E5620 @ 2.40GHz 1768 (2009)
Intel(R) Core(TM) CPU i7-2677M @ 1.80GHz 2202 (2010)
Intel(R) Core(TM) CPU i7-2720QM @ 2.20GHz 2674 (2010)

•  Characterization: My computer is modern but my code is not noticeably faster

•  Hypothesis: We have reached the limits! CPU performance isn’t increasing anymore

•  Deduction: If this is the case then an algorithm run on the newest processors will
 perform at roughly the same rate as on older processors

•  Experiment: …

Method Time (ms)
Single thread 300
Single thread with lock 10,000
Two threads with lock 118,000
Single thread with CAS 5,700
Two threads with CAS 18,000

Myth – Go Parallel to scale – part I

•  Characterization: I can do more work by executing tasks in parallel

•  Hypothesis: I can increase the rate at which I do work by increasing the number of
 threads that I do work on

•  Deduction: If this is the case then we should be able to measure higher throughput
 as we add more threads

•  Experiment: Let’s increment a 64-bit counter, a simple Java long, 500 million times…

Myth – Go Parallel to scale – part II

•  Characterization: I can do more work by executing tasks in parallel

•  Hypothesis: I can increase the rate at which I do work by increasing the number of
 threads that I do work on

•  Deduction: If this is the case then we should be able to measure higher throughput
 as we add more threads

•  Experiment: …

•  Characterization: I can do more work by executing tasks in parallel.

•  Hypothesis: I can increase the rate at which I do work by increasing the number of
 threads that I do work on.

•  Deduction: If this is the case then we should be able to measure higher throughput
 as we add more threads.

•  Experiment: …

Myth – Go Parallel to scale – part II

The Experiment:
From Guy Steele's talk at the

Strange Loop Conference
(http://www.infoq.com/presentations/Thinking-Parallel-Programming)

Tested with copy the text of ‘Alice in Wonderland’

•  Characterization: I can do more work by executing tasks in parallel.

•  Hypothesis: I can increase the rate at which I do work by increasing the number of
 threads that I do work on.

•  Deduction: If this is the case then we should be able to measure higher throughput
 as we add more threads.

•  Experiment: …

Myth – Go Parallel to scale – part II

public class BruteForce
{
 public static List<String> words(String s)
 {
 List<String> result = new ArrayList<String>();

 int i = s.length();
 int lastChar = -1;

 while (--i != -1)
 {
 if (lastChar == -1 && s.charAt(i) != ' ')
 {
 lastChar = i;
 }
 else if (lastChar != -1)
 {
 if (s.charAt(i) == ' ' || i == 0)
 {
 result.add(s.substring(i + 1, lastChar + 1));
 lastChar = -1;
 }
 }
 }

 return result;
 }
}

package strings

object WordState {

 def maybeWord(s:String) = if (s.isEmpty) FastList.empty[String] else FastList(s)

 def processChar(c:Char): WordState = if (c != ' ') Chunk("" + c) else Segment.empty

 def processChar2(a: WordState, c:Char): WordState = if (c != ' ') a.assoc(c) else a.assoc(Segment.empty);

 def compose(a: WordState, b: WordState) = a.assoc(b)

 def wordsParallel(s:Array[Char]): FastList[String] = {
 s.par.aggregate(Chunk.empty)(processChar2, compose).toList()
 }

 def words(s:Array[Char]) : FastList[String] = {
 val wordStates = s.map(processChar).toArray
 wordStates.foldRight(Chunk.empty)((x, y) => x.assoc(y)).toList()
 }
}

trait WordState {
 def assoc(other: WordState): WordState
 def assoc(other: Char): WordState
 def toList(): FastList[String]
}

case class Chunk(part: String) extends WordState {
 override def assoc(other: WordState) = {
 other match {
 case c:Chunk => Chunk(part + c.part)
 case s:Segment => Segment(part + s.prefix, s.words, s.trailer)
 }
 }

 override def assoc(other: Char) = Chunk(part + other)

 override def toList() = WordState.maybeWord(part)
}

object Chunk {
 val empty:WordState = Chunk("")
}

case class Segment(prefix: String, words: FastList[String], trailer: String) extends WordState {
 override def assoc(other: WordState) = {

 other match {
 case c:Chunk => Segment(prefix, words, trailer + c.part)
 case s:Segment => Segment(prefix, words ++ WordState.maybeWord(trailer + s.prefix) ++ s.words, s.trailer)
 }
 }

 override def assoc(other: Char) = Segment(prefix, words, trailer + other)
 override def toList() = WordState.maybeWord(prefix) ++ words ++ WordState.maybeWord(trailer)
}

object Segment {
 val empty:WordState = Segment("", FastList.empty[String], "")
}

Myth – Go Parallel to scale – part II

Test Lines
of Code Ops/Sec

Scala: Parallel Collections 61 400
Java: Imperative single threaded solution 33 1,600

•  Characterization: I can do more work by executing tasks in parallel

•  Hypothesis: I can increase the rate at which I do work by increasing the number of
 threads that I do work on

•  Deduction: If this is the case then we should be able to measure higher throughput
 as we add more threads

•  Experiment: …

Myth – Adding a batching algorithm
increases latency

•  Characterization: Adding a batching algorithm increases latency

•  Hypothesis: Waiting for the batch to fill will always add latency

•  Deduction: If this is the case then we can never exceed the maximum rate at which
 a serial approach will work.

•  Experiment: …

Myth – Adding a batching algorithm
increases latency

•  Characterization: Adding a batching algorithm increases latency

•  Hypothesis: Waiting for the batch to fill will always add latency

•  Deduction: If this is the case then we can never exceed the maximum rate at which
 a serial approach will work.

•  Experiment: … 1.  Batching can be implemented as a wait with a
timeout

2.  Send what is available as soon as possible
then loop

Send 10 concurrent messages to an IO
device with 100us latency

•  Little’s Law comes into play on points of serialisation

Min (us) Mean (us) Max (us)
Serial 100 500 1000
Batch Type 2 100 190 200

Myth – Adding a batching algorithm
increases latency

•  Characterization: Adding a batching algorithm increases latency

•  Hypothesis: Waiting for the batch to fill will always add latency

•  Deduction: If this is the case then we can never exceed the maximum rate at which
 a serial approach will work.

•  Experiment: …

My Top 10 Folklore

1.  Queues are way to pass events between threads

2.  Domain models do not perform

3.  Immutable objects & functional techniques will solve multi-core
4.  SSDs are much faster than spinning disks

5.  Operating system schedulers do the right thing

6.  A local network hop is expensive

7.  JDK Collection classes are high performance

8.  Transactional systems need a relational database
9.  TCP is the obvious protocol for communications

10.  Short lived objects are free for garbage collection

Questions?

Blog: http://mechanical-sympathy.blogspot/

Twitter: @mjpt777

"The most amazing achievement of the computer software industry is its
continuing cancellation of the steady and staggering gains made by the
computer hardware industry.“

- Henry Peteroski

