
Spring Framework 2.5: New and Notable

Ben Alex, Principal Software Engineer, SpringSource

springsource.com 2

GOAL>
Learn what’s new in Spring 2.5 and why it
matters to you

springsource.com 3

Agenda

Goals of Spring 2.5

Support for new platforms
Annotation based Dependency Injection
@Component and other stereotype annotations
Component scanning
Spring MVC update
The future

springsource.com 4

Background to Spring 2.5

Spring has become de facto standard component model for
enterprise Java
• Gartner:

• 75% of middleware vendors will provide Spring integration by 2009

• Forrester
• “Most enterprise Java users reported using Spring”

• BEA
• Most respondents to Dev2Dev survey use Spring

• Job listings
• Spring leads among Java component model technologies in worldwide job

requirements

springsource.com 5

Goals of Spring 2.5

To strengthen Spring’s position as the de facto standard and
most capable component model for enterprise Java

To continue to deliver simplicity and power
• Support for new platforms

• Annotation support across the framework

• Significant improvement in Spring MVC framework

springsource.com 6

Support for new Platforms

New Platform support:
Java 6 (JDK 1.6)
Java EE 5
OSGi

springsource.com 7

Java 6 Support

One of the first major frameworks with dedicated support for
Java 6 (JDK 1.6)

New JDK 1.6 APIs supported:
• JDBC 4.0
• JMX MXBeans
• JDK ServiceLoader API

JDK 1.4 and 1.5 still fully supported
JDK 1.3 no longer supported
• Declared end-of-life by Sun a year ago

springsource.com 8

Support for new Platforms

New Platform support:
Java 6 (JDK 1.6)
Java EE 5
OSGi

springsource.com 9

Java EE 5 support

Integration with Java EE 5 APIs
• Servlet 2.5, JSP 2.1 & JSF 1.2
• JTA 1.1, JAX-WS 2.0 & JavaMail 1.4

J2EE 1.4 and 1.3 still fully supported
• BEA WebLogic 8.1 or higher
• IBM WebSphere 5.1 or higher

Spring 2.5 component model processes Java EE 5 annotations
• JSR-250 injection and lifecycle annotations

springsource.com 10

Other JEE enhancements: RAR support

Ability to deploy Spring appIication as a RAR file

• For J2EE 1.4 and Java EE 5 (JCA 1.5 ResourceAdapter)

�

For non-web deployment units driven by messages, jobs etc
• Instead of headless WAR
• Add a META-INF/ra.xml file that references a Spring

applicationContext.xml file
• Put the required library JARs in the root of the RAR archive
• Can access app server services like JTA TransactionManager and
MBeanServer

springsource.com 11

Other JEE enhancements: IBM WebSphere 6

Spring 2.5 is officially supported on IBM WAS 6.x

Support for WebSphere-specific transaction management API
• Including transaction suspension

• Avoiding use of the raw JTA TransactionManager on WebSphere

• On WebSphere 6.0.x and 6.1.x

WebSphereUowTransactionManager
• Enhanced replacement for standard Spring
JtaTransactionManager using proprietary IBM APIs without
polluting application code

springsource.com 12

Support for new Platforms

New Platform support:
Java 6 (JDK 1.6)
Java EE 5
OSGi

springsource.com 13

Spring and OSGi

Open Services Gateway Initiative

Dynamic module system for Java
• Clean isolation of modules
• Versioning
• Hot deployment

A bundle is the central packaging unit
• Versioned JAR
• Specifies types being exported
• Specifies types that need to be imported
• Can be dynamically changed at runtime

springsource.com 14

Spring is OSGi ready – today!

Most recent Spring Portfolio similarly provide OSGi metadata
• For example, Spring 2.5 JARs include OSGi metadata in the manifest

Spring Dynamic Modules provides Spring-OSGi integration

SpringSource Application Platform uses an OSGi kernel

SpringSource Enterprise Bundle Repository provides bundles

JEE remains fully supported by Spring
• WARs, RARs, EARs and PARs with a consistent programming model

springsource.com 15

VIDEO>
SpringSource Application Platform

SpringSource Tool Suite

SpringSource Enterprise Bundle Repository

springsource.com 16

Agenda

Goals of Spring 2.5
Annotation based Dependency Injection (DI)
@Component and other stereotype annotations
Component scanning
Spring MVC update
The future

springsource.com 17

Annotation-driven DI in Spring 2.5

We've supported annotations in Spring since 2004

@Autowired
• Native Spring annotation syntax
• Designed in late 2007
• Integration of proven Spring model with experience from use of

annotation-driven models

@Resource
• JSR-250/EJB3 model

springsource.com 18

Annotation-driven DI: Pros and Cons

Pros
• Annotations can reduce or eliminate external configuration
• More concise mechanism because you specify what should be injected,

with the location of the annotation providing where

Cons
• Annotations are per-type (not per-instance)
• Doesn’t work for legacy code with existing classes without annotations
• Need to recompile Java code to modify configuration
• Not well suited to externalizing simple types

springsource.com 19

Resolving Dependencies: @Autowired

Injection at constructor/field/method level
Supports multi-argument methods
• Concise

Annotations make autowiring much more useful

@Autowired
public void createTemplates(DataSource ds,

ConnectionFactory cf) {
 this.jdbcTemplate = new JdbcTemplate(ds);
 this.jmsTemplate = new JmsTemplate(cf);
}

springsource.com 20

@Qualifier Annotation

public class JdbcOrderRepositoryImpl
implements OrderRepository {

@Autowired
public void init(

@Qualifier("myDS")
DataSource orderDataSource,
@Qualifier("otherDS")
DataSource inventoryDataSource,
MyHelper autowiredByType) {

// ...
}

springsource.com 21

Using your own @Qualifier annotations

public class JdbcOrderRepositoryImpl
implements OrderRepository {

@Autowired
public void setOrderServices(

@Emea OrderService emea,
@Apac OrderService apac) {

// ... }
}

springsource.com 22

Using your own @Qualifier annotations

@Emea
public class EmeaOrderService

implements OrderService {

...
}

@Apac
public class ApacOrderService

implements OrderService {
...

}

@Qualifier
@Component
public @interface Emea {
}

@Qualifier
@Component
public @interface Apac{
}

springsource.com 23

Using your own @Qualifier annotations

<bean class="example.EmeaOrderService">
 <qualifier type=“example.Emea“/>
 <!–-
 EmeaOrderService need not be annotated
 -->

</bean>

<bean class="example.ApacOrderService">
 <qualifier type=“example.Apac“/>
 <!--
 Inject any dependencies required by this bean
 -->
</bean>

springsource.com 24

@Autowired pros and cons

Pros
• Capable model
• Simple, concise, yet powerful
• @Qualifier annotation avoids Spring annotations on target

Cons
• Same cons as mentioned earlier for annotation-based DI
• Plus @Autowired is a Spring-specific mechanism

• …but you can still invoke the methods as per usual

springsource.com 25

@Resource for injection

@Resource
• Identifies injection point

• Resolves to a single component

• Spring does not require that the component comes from JNDI,
although Spring can transparently resolve JNDI references

springsource.com 26

public class DefaultAccountService
implements AccountService {

 @Resource
 private AccountDAO jdbcAccountDAO;
 ...
}

@Resource Example

springsource.com 27

@Resource Pros and Cons

Pros
• Supports Java EE 5 configuration style
• May help portability

Cons
• Limited power

• @Resource style is not as powerful as @Autowired

• Can only resolve a single reference

• No support for “qualifiers” or annotation resolution

• Forced to import JEE annotations directly into your Java types

springsource.com 28

JSR-250 lifecycle annotations

@PostConstruct
• Similar to InitializingBean.afterPropertiesSet()

@PreDestroy
• Similar to DisposableBean.destroy()

Best practice
Simple but valuable functionality to standardize
Not Spring specific
We recommend using these annotations in place of
Spring init-method or InitializingBean interfaces

springsource.com 29

Agenda

Goals of Spring 2.5

Annotation based Dependency Injection
@Component and other stereotype annotations
Component scanning
Spring MVC update
The future

springsource.com 30

Out-of-the-box stereotype annotations

@Service
• Identifies a stateless service

@Repository
• Identifies a repository (DAO)

@Aspect
• @AspectJ aspect

@Controller
• Spring 2.5 @MVC controller

Can define your own…
@Component
• Meta-annotation

• Annotate your own annotation with @Component and receive component scanning
• @Emea example earlier

springsource.com 31

Component Scanning

Scans the classpath for annotated classes
Removes the need for XML definitions unless you want to do
something you can’t do in annotations

@Service
public class DefaultAccountService { ... }

<bean id="defaultAccountService"
class="DefaultAccountService"/>

springsource.com 32

Component Scan Usage

Specify package(s) to pick up
Can coexist with XML bean definitions and namespaces
Advanced component scanning syntax also available

<context:component-scan
base-package="com.mycompany.myapp"/>

springsource.com 33

Component Scan Pros and cons

Pros
• No need for XML unless you really need it
• Changes (eg new classes) automatically discovered
• Highly configurable if using Spring's @Autowired model

Cons
• Not a 100% solution – you'll still need XML sometimes
• Avoid excessive classpath scanning
• Lack simplified XML application structure

• Unless you use Spring IDE!

You can concurrently mix and match!

springsource.com 34

Spring IDE Visualization and Editing support

Unified view of configuration

springsource.com 35

Agenda

Goals of Spring 2.5

Annotation based Dependency Injection
@Component and other stereotype annotations
Component scanning
Spring MVC update
The future

springsource.com 36

Annotated @MVC Controllers

• Java 5 evolution of MultiActionController
• Including form handling capabilities

POJO-based
• Just annotate your class
• Works in servlet and portlet container

Annotations provided
• @Controller
• @RequestMapping
• @RequestMethod
• @RequestParam
• @ModelAttribute
• @SessionAttributes
• @InitBinder

springsource.com 37

Example of Annotated MVC Controller
@Controller
@RequestMapping("/order/*")
public class OrderController {

 @Autowired
 private OrderService orderService;

 @RequestMapping("/print.*")
 public void printOrder(HttpServletRequest request,

 OutputStream responseOutputStream) {
 ...
 // write directly to the OutputStream:
 orderService.generatePdf(responseOutputStream);
 }

 @RequestMapping("/display.*")
 public String displayOrder(
 @RequestParam("id") int orderId, Model model) {
 ...
 model.addAttribute(...);
 return "displayOrder";
 }
}

springsource.com 38

Advanced annotation-based MVC

Annotations for
• Session attributes

• Data binder initialization

• Form lifecycle

See the PetClinic sample application that ships with Spring
• Compare with Spring 1.0 version to see how much simpler today’s

Spring is to use!

springsource.com 39

Agenda

Goals of Spring 2.5

Annotation based Dependency Injection
@Component and other stereotype annotations
Component scanning
Spring MVC update
The future

springsource.com 40

Spring Open Source Ecosystem

The Spring Portfolio

Spring
Framework

Spring for .NET

Spring MVC

Spring Batch

AspectJSpring Security

Spring Integration

Spring Webflow

Pitchfork

Spring Web Services

Spring LDAP

Spring Dynamic Modules
Spring IDE

Spring Rich Client

springsource.com 41

Spring Commercial Product Ecosystem

SpringSource Tool Suite
• Free for personal use – download it today and quick-start with Spring 2.5!

SpringSource Application Platform
• The perfect way to build OSGi applications – today (and free under GPL!)

SpringSource Enterprise
• Pre-integrated Spring with 24/365 guaranteed fixes, support, indemnity

SpringSource Application Management Suite
• Managing and monitoring your production environment

SpringSource Advanced Pack for Oracle Database
SpringSource Enterprise Ready Server
Enterprise Support for HTTPD, Tomcat and ActiveMQ

springsource.com 42

Spring 3.0

Q3, 2008

Moves to Java 5+ basis
Further improvements in Spring MVC will provide a unified
programming model between MVC and Web Flow
Comprehensive REST support across MVC and Web Services

springsource.com 43

Summary

Spring 2.5 makes Spring easier to use, but still more powerful
Adds extensive support for annotations across the framework
Spring MVC 2.5 leverages Java 5 features to provide more
concise, more flexible model
The Spring Portfolio extends beyond the Spring Framework to
handle a wide range of enterprise requirements
Spring 3.0 will continue the rapid progress of Spring to meet
tomorrow’s requirements
Growing set of choices for optimal deployment of Spring
based applications

springsource.com 44

For More Information

Online resources
• Spring Framework home: www.springframework.com
• SpringSource home: www.springsource.com

Visit the SpringSource booth

http://www.springframework.com/
http://www.springsource.com/

springsource.com 45

THANKS>
ben.alex@springsource.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

