
1

© 1993-2008 Object Mentor Incorporated. All rights reserved.

Lean and Agile In the Large 
Principles, Practices and Experiences for Large 

Scale Software Development 

Dave Thomas
Object Mentor Inc. and Bedarra Research Labs

Carleton University Canada, Queensland University of 
Technology Australia

www.davethomas.net
davethomas@objectmentor.com

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 3

Lean and Agile and Agility

� Both Lean and Agile and Death By Quality (TQM, Six Sigma, CMM) 
come from Toyota Just In Time Manufacturing

� Lean appeals to business types most of whom don’t understand software 
and often feel hostage to it

� Agile appeals to development types many of whom don’t understand 
business and large organizations and often feel hostage to it

� Agility appeals to business leaders but they confuse it with Agile 
Development (predictability + quality may not come with increased 
productivity or flexibility)

� Agile Development (Scrum, XP, TDD …) is the best set of practice for 
small teams to develop software especially when scope is managed by a 
knowledgeable business customer/product owner.



2

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 4

Lean and Agile in The Large is a Business Transform ation

1. Adoption of new vocabulary

2. New Practices and Artifacts define a new process

3. New Development Infrastructure to support 1.

4. Transformation from directing to coaching

5. Usually  accompanied by organizational refactoring

6. Typically takes 18 – 24 months

Not for the faint at heart!

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 6

Lean Principles

� Inspired by lean principles derived from 
Just-In-Time Manufacturing 

� Incorporates values and practices articulated in 
Peopleware, Spiral and Rapid Application Development

Seven Lean Principles

Eliminate waste
Amplify learning

Decide as late as possible
Deliver as fast as possible

Empower the team
Build integrity in
See the whole

Core Shared Values

Client-focused
Client-driven

Incremental results
Continuous questioning and 

introspection
Change is progress to a better 

solution



3

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 7

Common Examples of Software Waste

� Lack of common vocabulary, rhythm and tools

� Too many meetings – 1/meetings is a productivity metric

� Lack of Transparency

� Defects in requirements, architecture, design, programs or tests

� Lack of understanding/training – requirements,  design, code, test 

� Unmanaged supplier, development or requirement risks

� Unnecessary Fire Drills – feature request disguised as a critical defect

� Excessive component repair vs. timely replacement

� Manual Testing

� Unnecessary process artifacts

� Big Analysis, Architecture, Design, excessive dependencies, coupling

� Gold Plating – Requirements, Code or Tests

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 8

Relationship between Development Team and Management

Lean/Agile Commitments

� Successful development requires trust and transparency 
between customer/management and supplier/development

� Need to foster a “work with” instead of “works for” relationship

Working With

Management

Vision
Communication

Coordination
Coaching

Managing Scope

Development

Predictability
Quality
Visibility

Discipline



4

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 12

A Large Scale Lean and Agile Success Story

The IBM initiated Eclipse.Org involves over 1000 developers from multiple 
companies globally developing software using Lean and Agile practices. 

milestones
first

API
first

end
game

retrospectives

always have
a customer

build to
last

continuous
integration

community 
involvement

new & 
noteworthy

early
incremental 

planning

continuous 
testing

use your
own product

component
centric

drive with 
open eyes

validate

reduce 
stress

learn

enable

attract 
to latest

transparency

validate
update

dynamic 
teams

show
progress

enable

explore
validate

© 2005 International Business Machines; made availa ble under the EPL v1.0

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 13

Lean and Agile Values and Principles

Large-Scale Lean Development Activities At-A-Glance

Envisioning

Product Owner Team Common Work Practices

Definition Development Release
Engineering

Prototypes/Models

Requirements 
Backlog

Risk Backlog

Team… Team…

GUI Guidelines

Architecture

Product Backlog

Release Backlogs

Team…

Team…

Team…

Team…

Potentially
Shippable
Product

Team
Release
Backlog

Shippable
Code

Increments

Sprint
Release

Backlogs

CI&T

CI&T

©2006-2007 Bedarra Research Labs and Object Mentor



5

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 14

Good Software Comes in 3s

Build It 3 Times; you get it right the third time!
� Once to understand what it is (Envisioning )

� Once to understand how it goes together (Definition)

� One last time to make it for real (Development )

� Make sure everyone shares the big story, has the right infrastructure 
and the parts make the whole and ship it (Release Engineering )

Ship It Three Times and Then Start Re-Design
� 1st Release make it useful and robust

� 2nd Release make it more useful and faster

� 3rd Release make it more useful and smaller

� 4th Release Start Redesigning to avoid Legacy

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 15

Common Work Practices and Rhythms

Regardless of the activity, each team is effectively self managed through the use 
of four key practices

Sprint Rhythm (2 wk)
• Sprint Planning (1) , Daily Stand-ups .., Sprint Retrospective (1)
• Features => Stories => Tasks (1 – 2 days)

Development Rhythm
• Design Acceptance Test, Design Unit Test, Design Code, Build and Test

Release and Product Rhythm 
• 6 - 8 sprints per internal release; 3 - 4 internal releases per product release
• Envision (3 – 6 m), Definition (1 – 3 m), Development ( 6 – 12), Freeze (1 – 3)
• Component and Platform Rhythm is 3 – 6 months ahead of  Product Release

Sprints
Used to Execute

The Work In 
Small Increments

Metrics
Used to Track
and Maintain

Visibility

Backlogs
Used to Organize 

The Work By
Value

Continuous 
Test

Used to Ensure
Quality



6

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 17

Requirements 
Backlog

Product 
Backlog

Product Release
Backlog

SCRUM Team 
Release Backlog

Sprint 
Backlog

Requirement Feature

Feature

Feature

Feature Story Story

StoryFeature Story

Envisioning  – 10-15%b

Release Engineering   – 10-15%

Development   – 40-55%

Definition   – 15-20%

… Release 2… … Team 2…Risk Backlog

Risk Feature

Feature

Story

Requirement

Backlogs are Used To Organize The Work

� BACKLOG is a list of work items – a few backlogs cover life cycle

� All work items must be entered into one of the backlogs 

� All work items are prioritized by customer value

� Backlogs are reviewed and triaged as necessary

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 18

Scrums used to organize work

� Product teams consist of  4 - 20 people called SCRUMs

� Scrum is guided and facilitated by leader acting as coach/facilitator

� Scrum has the whole team needed to execute their backlog

� 2 week Sprints provide a common rhythm for whole life cycle

� All work including defect repair, training is in the backlog

Team 
‘sprints’ at 
sustainable

pace 

Product 
Release

Backlogs

Sprint 
Backlog

Potentially Shippable
Product  
Increment

Daily
Stand-up
Meeting

Schwaber, Beedle

Scrum
Backlog

Product Release Backlog
-- All work items for a release 
-- Prioritized by customer

Scrum Backlog
-- Assigned to a scrum
-- Work items for one release
-- Work items equal 1-4 days work

Sprint Backlog
-- Sprint are 2 or 4 weeks
-- Contains work items for    

the sprint time box

Potentially shippable 
product increment
The definition of a 
“potentially shippable 
increment” is determined 
by an informed “customer”.



7

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 19

Types of Scrums

� Scrums are used for all activities in the product life cycle
� Envisioning Scrums

� Collect and analyze market, customer, product, and technology requirements
� Develops proof-of-concept and vision prototypes 
� Verifies prototypes with customers
� Capture requirements in a Requirements Backlog 
� Capture risks in a Risk Backlog

� Definition Scrums
� Translate Requirements into Features by creating User Cases and Acceptance Tests
� Define the Architecture and Component Breakdown Structure for the product
� Sort Features into the Product Backlog and Product Release Backlogs
� Speculative Estimates

� Development and Release Engineering Scrums
� Translate Features in Scrum Release Backlog into Stories plus associated unit & acceptance 

tests 
� Stories include estimates that are owned by the team and refined over time
� Stories are prioritized based on their associated business value
� Converts Stories into Working Code

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 20

Measurements are used to Track Progress

� Project management not a separate entity in an Agile team

� Project management owned collectively by team

� Team members contribute to the estimating process 
and commit to the deliverables

� Team members own estimates, schedules and deliverables
� Team responsible for maintaining visibility

� Team uses wall charts or online charts to make status visible to all 
stakeholders

� Metrics derived automatically and continuously from the build process
� Metrics are used to assess performance of the process, not people

� Typical Measurements

� Efficiency: Are resources being optimally deployed?
� Progress: Is the project on track for time and budget?
� Productivity: How much code per unit of labor?
� Rhythm or heartbeat: How active is the project day-to- day?
� Quality: How good is the software being produced?



8

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 21

Team-Oriented Metrics

� Features/Stories Delivered (Velocity)

� Features/Stories Planned (Estimated Velocity)

� Features/Stories Remaining (Burn Down)

� Unit and Acceptance Tests Run (Progress)

� Backlog adds, changes, deletions (Feature Flux and Creep)

� Continuous Check-ins and Builds (Rhythm)

� Classes and Methods adds, changes, deletions (Impact on Code Base)

� Code Coverage due to UTs and ATs (Quality)

� Defects and Defect Density (Quality)

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 22

Lean and Agile Principles

Lean and Agile For Large-Scale Development

Envisioning

Product Team Key Work Practices

Definition Development Release
Engineering

Prototypes/Models

Requirements 
Backlog

Risk Backlog

Team… Team…

GUI Guidelines

Architecture

Product Backlog

Release Backlogs

Team…

Team…

Team…

Team…

Potentially
Shippable
Product

Team
Release
Backlog

Shippable
Code

Increments

Sprint
Release

Backlogs

CI&T

CI&T

©2006-2007 Bedarra Research Labs and Object Mentor



9

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 23

Envisioning and Definition “BIG SPRINT 0”

The initial sprint is often called sprint 0 and it is used to as a  exploratory/high 
level planning activity which seeks to explore, understand, swag, identify 
dependencies using practices such as: 

� Spikes!

� Thin Slices (Tracer Bullets)

Unfortunately in large scale software new features or components contain so 
many unknowns and so much risk that development teams have little chance 
of delivering these in a release time box!   

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 25

10% of overall effort

Envisioning

Envisioning ensures that you target the right features, technology and markets 
through customer, market, and technology research

Competitive Delta
Analysis

Practices
���� Brainstorming & visioning ���� Competitive 
analysis (SWOT) ���� Delta analysis ���� QFD 
���� Customer studies ���� Hardware, platform & 
component evals ���� Prototyping/modeling

Deliverables
���� Requirements backlog ���� Risk 
backlog ���� Analysis & Verification 
Reports ���� Prototypes/Models 
���� Look-and-Feel Guidelines

Requirements
Backlog

Risk
Backlog

Customer Field
Studies & Interviews

Technology
Evaluations

Prototypes
& Models

GUI
Guidelines

Market & Product
Analysis Brainstorming

& Visioning

QFD
House of Quality

Prototyping

Product Development Deliverables

Acceptance
Criteria



10

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 26

Product Vision – Voice of The Customer

� Customers, Business Analysts, Product Owners and Developers need a 
simple story (s) which provides a shared vision of what is being developed

� Story Telling carries the essence, humans render the details according to the 
story, be it complex software, knowledge management or animated films

� Story is elaborated by

� Glossary to define terminology
� Customer stories in the form of narrative and/or video
� Customer stories in terms of features relative to current 

or competitors product or our legacy product – is like, is 
not like

� Envisioning, House of Quality (QFD) …
� Domain Model(s) to show essential relationships
� Prototypes, Simulations 

Essence = Vision = The Really Big Story

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 27

The Requirements Tangibility Imperative!

� Requirements MUST be UNDERSTANDABLE!
⇒ Need the conversation, not just the text
⇒ Tangibility is directly correlated to domain knowledge and understanding the 

customers stories.
⇒ Acceptance Criteria make requirements testable

� Requirements Must Have Business Value
⇒ Need to have a business value, and an estimated effort when defined, revised for 

release backlog
� Requirements MUST be TESTABLE!

⇒TDD Acceptance Tests
� Non-Functional Requirements ARE Requirements – TCO, ilities…

⇒ Need TDD Acceptance Tests as well



11

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 28

So… Why Do We Envision?

� To understand the market – If we build it, will they come?

� To understand what the customer wants – Is it useful? Is it usable?

� To determine that we can actually build it – Can we engineer it?

� To determine if we can build it better than the next guy.

� Convert vague concepts into concrete product visualizations.

� Convert vague desires into tangible requirements.

� To verify with the customer that our assumptions are correct.

� To prioritize the customer’s needs so we can prioritize development.

� To establish a product vision and a roadmap.

Ideal Development Path

Probable Path

Visionless
Path

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 29

What Is Definition?

Definition is the process of ensuring that the product can be 
composed of its constituent parts and allocated the 
backlogs to appropriate teams

� Built to last through the use of appropriate internal and 
external components all of which have well defined 
interfaces

� Features are mapped across the architecture and 
allocated to feature and component teams

� Features are roughly sized/estimated as an input to 
downstream development teams



12

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 30

20% of overall effort

Definition

Definition involves transforming requirements into features, creating a high-level 
architecture and determining an initial work allocation for teams. 

Product
Backlog

(Features & 
Components)

Requirements
Backlog

Practices
���� Feature Definition ���� Estimating ����

Dependency Management ���� Vendor 
Management ���� TDD ���� Architecture-Driven 
Design ���� Component & Feature Break Downs

Deliverables
���� Feature docs ���� Architecture 
docs ���� Product, component and 
feature backlogs ���� Risk backlog

Release 1
Backlog

Release N
Backlog

Use 
Cases

Acceptance 
Tests

Architecture 
Driven Design

Estimating

Dependency Mgt

Prioritizing

Product Development 
Deliverables

Risk
Backlog

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 31

One or more 
use cases 

or scenarios

One or more 
acceptance tests

Feature
(also called a Theme)+ =

Features

� A feature is a customer requirement that has been translated into something 
that can be implemented by the development team 

� Typically consists of one or more use cases and acceptance tests 

� The use cases describe the feature’s operation 

� The acceptance test describes the acceptable outcomes



13

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 33

Architecture Driven Design (ADD) - API First

� Object Orientation [Simula 67] is an approach to software architecture, design 
and implementation which is based on building simulation models of the 
system.  These models are expressed in code.

� Architecture Driven Design Benefits

� Compartmentalizes the work into logical divisions
� Creates stability within the individual parts of the 

product 
� Establishes ownership and accountability for individual 

parts
� Communicates the essence of the product more easily
� Provides a single expression of the system 
� Model can be version managed easily
� Model can evolve

� Expressed through a layered architectural approach

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 34

Layered Architecture Example

Application
Layer

Service
Layer

Platform
Layer

Layered Architectural Model

� The layered model organizes the 
architecture into 3–5 layers which 
communicate through an API.  

� This model is essential for the use of third-
party platform or applications and often is 
heavily influenced by the use of third-party 
offerings.  

� Agile organizes work into 
feature breakdown structures and 
component breakdown structures. 

� These structures are organize, plan and 
allocate resources into Feature Teams, 
Component Teams and Platform Teams.

� The structures are also used to organize, 
plan and allocate Features and Releases.



14

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 35

Component Breakdown Structure (CBS)

� The CBS provides a software bill of 
materials for the organization calling out 
new, modified and existing software 
components.  

� The presence of a CBS is the hall mark of a 
Product Line Architecture and enables 
building platforms and associated 
components and products.

� The CBS is developed bottom up often as a 
core platform or framework on which to build 
other products.  

� Ideally one would just configure the 
components and deliver a product but the 
reality is that features need additional code 
hence applications.  

Component Break Down Structure
(Software Bill Of Materials)
Component Break Down Structure
(Software Bill Of Materials)

Application
Layer

Service
Layer

Platform
Layer

HW/SW 
Encapsulation, 
Drivers, Protocols

Means 
subsystem

Means component, framework or 
library

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 36

use cases/scenarios

acceptance tests

+ =Feature Story

Story

Story Story

Story

Story

==== FBS

Feature Breakdown Structure (FBS) 

� Features are organized in an FBS 

� The FBS relates features to other features (feature dependencies)

� The FBS also cross cuts components (component dependencies) 

� Dependencies are captured in a Dependency Structure Matrix



15

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 37

Component
C

Component
B

Component
A

Feature Story
Feature Backlogs and Component Backlogs

Feature and Component Teams and Backlogs 

� There is a natural tension between components and features a critical part of 
definition is the identification of dependencies and the allocation of work to 
appropriate teams.

� Feature cross-cuts components hence require either product specific feature 
development or additional component development to support that feature. 
Often it is a combination of both with the need to move feature specific 
extensions into components in a later release. 

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 38

Product and Release Planning

Product
Backlog

Product
Release
Backlog

Scrum 3

Product
Release
Backlog

Scrum 2

Scrum 1
Release
Backlog

Sprint 3

Sprint 2

Sprint 1
Backlog

Product Team 
builds backlog 
containing list of 
features with a 
first estimate.

Features are 
allocated to 
a specific 
release. A 
release is a 3-4 
month timebox.

Features assigned to a 
specific scrum. The scrum 
team refines the features 
into work items called 
stories, divides the stories 
into sprints, and prepares 
a second estimate.  The 
estimates are compared 
and consensus is reached 
thru discussion.

Based on discussion, 
work items may be 
moved from one sprint to 
another sprint, move 
from one team to 
another, deferred to 
another release.



16

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 39

Stage One: 
Estimate Preparation

Definition Team Release 
Estimates

The Product Team makes initial 
estimates for each feature in 
each of the Product Release 
Backlogs. 

Development Team Release 
Estimates 
Each SCRUM team make 
estimates for each feature in 
their Scrum Release Backlog.

Stage Two: 
Estimate Convergence

The two sets of estimates are 
compared. Consensus is reached 
through dialog between developers, 
product release engineers, architects, 
customers and owners.  

Based on the discussions, features 
may be shuffled, re-allocated, and re-
prioritized.

Based on the discussions, 
development schedules are updated 
and product release dates are set .

Product Estimates 

� Estimates are “negotiated”, not “assigned”

� Two-stage iterative estimating process conducted over 4-8 weeks

� Strong emphasis on the collective ownership

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 40

Planning –The Best Wrong Answer

� Estimates Are Owned By Team

� (e.g. multiple estimates by multiple people to encourage discussion)
� Use Relative Estimating Techniques 

� (e.g. this story is half as difficult as that story so it will take half the time)
� Use Range or 3 Point Estimates

� (e.g. use ranges or wide band Delphi)
� Use Multiple Units of Measurement

� (e.g. multiple units – ideal days, story points, classes/methods – to 
improve accuracy)

� Learn From Previous Estimating Experience

� (e.g. comparing previous estimates with previous actual outcomes)
� Learn from Expert Experience

� (e.g. If you have never used J2EE bring in someone who has!)



17

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 41

60% of overall effort

Individual
Sprint 

Backlog

SCRUM
Release
Backlog

Potential 
Shippable

Code

Finalized
Sprint

Backlog

Sprint Daily 
Stand-Up Meeting

Sprint
Retrospective

Meeting

Continuous
Integration 

& Test

Visible Progress

Refactoring

Collective Ownership
Unit & Acceptance
Testing

Practices
� Small Releases ���� Simple Design ���� Collective Ownership  
���� Refactoring ���� Continuous Integration and Test 
� Test-Driven Development ���� Architecture-Driven Design 

Deliverables
� Robust code 
���� Status reports
� Readiness

Sprint Planning Meeting

Estimating

Development

Development transforms requirements into tested code. 

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 42

10% of overall effort

Release Engineering

Release Engineering ensures correct integration of disparate code units 
into a cohesive product release. Performed concurrently with development.

Practices
���� Dependency Management ���� Vendor 
Management ���� Test-Driven Development 
���� Architecture-Driven Design ���� Continuous 
Integration and Test

Deliverables
���� Continuous Build and Test 
Environment ���� Stable, Robust 
Code ���� Progress Reports & 
Metrics

Dependency 
Management

Shippable
Product
Release

Team Code Increments

Continuous Integration & Test Environment

Environment 
& Tools Mgt

Continuous
Integration & Test

Reports &
Metrics



18

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 43

Release Engineering - Start With a Winning End Game

� Continuous Integration and Test Infrastructure

� Development Tools Infrastructure

� Transparency – Electronic Information Walls and Dashboards

� Dependency Management 

� Readiness and Quality

� Documentation

� International Language and Accessibility

� Manual Acceptance and Test Automation

� Freeze, Thaw and Fix Management

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 44

Dependency Management

� Dependency identification is a critical success factor because teams can become 
deadlocked waiting on code from other teams

� Dependency management is responsibility of Release Engineering on behalf of the 
Product Team 

� Thin Slices for each Feature reduce surprises

� Can be reduced by planning, sequencing and test-driven development 

� Individual and pair wise component testing reduces integration problems

� Integration sprints used to ensure features come together properly

Test fixtures are used to support parallel code dev elopment 
by isolating code components from one another for u nit testing

Isolating Fixture

Component 
Under Test

Component Component



19

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 47

Establish A Product Development Dashboard

Automate the linkage between features/stories,  
code and tests

Measure true progress based on the state of the 
continuous build

@StoryMain

Produce AT, UT, Velocity and 
Burndown Charts

Automatically

Load wiki with
requirements, 

features, use cases,
stories, acceptance 
tests and unit tests

Link code in 
library to stories 

in wiki

See http://www.jot.fm/issues/issue_2007_03/column4

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 48

Social Engineering

� Values
� Vision
� Standardize Vocabulary and Practices e.g. points vs. ideal days…
� Spread Experienced People Across Teams/Locations
� Use Playing Coaches to share vision and experiences
� Common Tools 
� Empower Distributed Teams – VOIP, IM, electronic White Boards 
� Provide company wide visibility – publish charts to web
� Peer Reviews, Technical Seminars…

• Predictable Delivery 
• Quality Delivery
• Teamwork 
• Early Problem Identification and Resolution

Align Individual/Team Compensation with Desired Beh avior

Common Culture



20

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 51

Communities of Interest – Some Examples

� Technical Communities

� Definition Community

� Envisioning Community

� Infrastructure and Tools 
Community

� Testing Community
� Leadership/Coaching Communities

� Technical 
Director/Management 
Community

� Team Leader/Scrum Coach 
Community

� Customer/Field Community

Management

Architects
Leads

Customer
Product

Mgr

Tools
Process

Infrastructure
Platforms

Coaches

Release
Deployment

Support

Test
Driven

Development

Products

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 53

Successful Software Development is about a Winning Culture

� Software is a team sport, and like all team sports practice, constructive 
peer feedback and coaching are essential.

� Winning teams need to implicitly know the moves of each player, as 
well as the movements of the team as whole.

� The ultimate expression of process is a culture where building software 
is more like playing jazz. People Just Do It!



21

© 1993-2008 Object Mentor Incorporated. All rights reserved. / Page 54

Key Changes in a Typical Lean and Transition

1. Software = Product Design and Manufacturing
Increase the understanding of the software value chain at all levels in the 
organization
Identify and reduce waste in software value chain
Understand the importance of component, platform and application life cycles  
Understand the benefits of investment in tangible requirements and architecture 
Understand how to design quality in (versus test defects out)

2. Directing and Managing => Leadership and Coaching
Work With versus Work For - Coaching versus Directing 
Increased self discipline for teams and individuals who own deliverables, quality and 
schedule
Increased individual ownership with associated responsibility and accountability
Leadership proactively identifies and manages risk

3. My Way versus The Best “Wrong Way” 
Everyone needs to change a little for the organization to change a lot 
Common vocabulary, practices and tools applied sensibly and metrics aligned with 
practices
Make sure everyone knows the same way before fixing it - Improve process each 
release of the company i.e. triage process/practice/tools defects like other defects 

4. Strengthen Technical and Coaching Ladders
Coaches valued for people skills; Technical leaders valued for technical skills
Peer evaluation is an important promotion metric for both
Mandatory constructive annual reviews


