David Holmes JA DD

Senior Java Technologist
Java SE VM Real-Time Group conference

Sun Microsystems 2008

June 2 - 4, Sydney, Australia
May 28 - 30, Brisbane, Australia

What is Real-Time?

» Simple definition: The addition of temporal constraints
to the correctness conditions of a program

* “When” Is as important as “what”
 “Alate answer Is a wrong answer”

 “real-time” does not mean “real-fast”
* (oing faster helps but ...

* Predictabllity is the key

* Non-real-time systems have many sources of
unpredictable behaviour

» Performance is based on the average-case

Example Temporal Constraints

* Deadline: started task must complete by a given time

* Once a request for a trade is received, it must execute
within dSms

* Latency: difference between when an event happens
and when it is seen to have happened

* Stop button handler must respond within 500us of a press

« Jitter: Variance in the time interval between events
* The input sensor must be sampled every 1ms +/- 100us

Latency and Jitter

. : Latency
Logic execution _I interval i interval i+1

o

| mm = |
’

|__om
time
period
Latency jitter = max(latency) - min(latency)

Interval jitter = (max(interval) - min(interval))/2

Latency is the measure of how long it takes the
system to respond to an event.

Jitter is the variability of a measured value.

For both: lower is better.

Why Real-Time Java?

= Same reasons as for using Java — but applied to
real-time application domains

* Traditional C/C++/assembler implementations difficult to
write, debug, maintain
* Real-time software loads are evolving
* Increase both in size and complexity

» Traditional, low-level programming no longer provides
the required level of abstraction

» Single solution for real-time and non-real-time code
* Re-use of people, tools, knowledge

Real-Time Specification for Java
(RTSJ) JSR-001

- Started in 1998. Experts from many communities
* Real-time systems, embedded systems, Ada, Java,
academia and industry

* The standard that defines how real-time behavior
must occur within Java technology

* Therefore, the only real-time Java technology!

 APIs and semantic enhancements which allow Java
code developers to correctly reason about and
control the temporal behavior of applications

» Better, high-level, portable abstractions
* 100% Java technology

JSR-1 Evolution

1998

Real-Time
Specification for
Java (JSR-001)
proposal submitted

Many companies
represented: IBM, Sun,
Ajile, Apogee, Motorola,
Nortel, QNX, Thales,
TimeSys, WindRiver

2002

JSR-001
approved by the
Java Community
Process

2005

RTSJ update
proposal

submitted
(JSR-282)

New Sun/IBM JSR

Uses of RTSJ

* |Industrial automation
* Aeronautic/Aerospace

Inverted pendulum
control problem

* Telecommunications
» Banking/Financial

Boeing Scan-Eagle UAV

Sun's Java Real-Time System

 Sun's implementation of the RTSJ
* 100% compliant with Java technology and RTSJ 1.0.2

» Java RTS 2.0 highlights
» Based on Java Platform, Standard Edition 5
* Runs on Solaris 10 OS,

- SPARC® technology, and x86/x64 platforms
* Relies on Solaris platform built-in real-time capabilities

» Java RTS 2.1 Early Access

* Runs on real-time Linux on x86
» SUSE Linux Enterprise Real Time 10
 Red Hat Enterprise MRG 1.0 (beta)

Java RTS 2.x Platforms

* From embedded single-board
computers

* To carrier-grade blade servers
* To enterprise servers

TERRITRERITRERITY

Java RTS Latency and Jitter Numbers

» Example of Java RTS 2.0 on Solaris 10 / SPARC

* Maximum Jitter: < 5 microseconds
» Maximum Latency: < 10 microseconds

* As good as the best commercial RTOS

* And often better, particularly on faster processors with
more memory

» But No Silver Bullet!

 Enhanced predictability comes at expense of throughput

* How much depends on platform, hardware, #CPUs, amount of
memory, JVM configuration and the application itself

RTSJ System Model

Data Transfer Queues I

Non Real-Time
java.lang.Threads

Soft Real-Time

Realtime Threads
Real-Time GC*

Hard Real-Time
NoHeapRealtime Threads
Highest priority

Tightly bounded jitter

and latencies

* RTGC not specified by RTSJ

Key RTSJ Features

» Scheduling and Dispatching

 Managing schedulable objects removes unpredictable
scheduling

» Synchronization
* Priority inversion avoidance removes unpredictable delays

» Memory Management
* Alternatives to the heap to removes unpredictable GC

» Asynchronous events and handlers
* Event driven programming model

* Time, Clocks and Timers

Threads and Schedulable Objects

«interface»
java.lang.Runnable

ST

«interface»

java.lang.Thread Schedulable
le AN AN
RealtimeThread AsyncEventHandler
AN

NoHeapReaitimeThread

RTSJ Scheduling

» Schedulable Object managed by a Scheduler

* One defined scheduler: PriorityScheduler
 Singleton: PriorityScheduler.instance ()
» Execution eligibility based on an integer priority value
* Higher the value the higher the priority
* Minimum of 28 unique, consecutive priority levels
« Distinct from (and >) the 10 java.lang. Thread priorities

e getMinPriority(),getMaxPriority (),
getNormPriority ()

Fixed Priority Preemptive Scheduling

» Highest priority schedulable object always runs
* Higher priority SO preempts lower priority one
» Schedulable object runs until it blocks
* No time-slicing! No “fairness’
» Caution: “greedy” real-time threads can “hang” your system!
* PrioritySchedulexr doesn't change priority
except for priority inversion avoidance
» Contrast with dynamic scheduler: Earliest Deadline First

* All internal system queues maintained in priority order;
* Run queue, monitor entry queue, monitor wait-set

* Necessary for predictability, but not sufficient ...

Java RTS Predictability on Solaris OS

» Uses Solaris Real-Time (RT) scheduling class
» 60 priority levels |

» Highest range of thread
priorities in the system

* JVM locked into memory
* No page swap in/swap out

* Processor set bindings
* RTTs and NHRTs Interactive

» Class pre-loading and initialization

* Initialization Time Compilation (ITC)
* No runtime execution variance

160-169

10-59 Real-Time 100-159

RT priority range

Ui

System 60-99

Timesharing 0-59

~@—306ue. fjLoud jeqo|b —»J

i|

Characterizing Schedulable Objects

» Schedulable objects have execution characteristics
* Scheduling behaviour, release pattern, memory constraints

» Characteristics represented by “parameter” objects:
* SchedulingParameters, ReleaseParameters

 Parameter objects “tag” the SO and contain data
* Priority, deadline, deadline-miss handler, cost

» An SO can link to one parameter object of a given kind
* Initially set at SO construction, can be modified later

* A parameter object can be associated with many SO's
= Any change to the parameter object affects all the SO's

Scheduling Parameters

SchedulingParameters

AN

PriorityParameters

AN

Not used by
ImportanceParameters | priorityScheduler

Release Parameters

Execution cost
Deadline

ReleaseParameters Cost overrun handler
Zl deadline miss handler

Periodic release
pattern

starttime | PeriodicParameters
Period

- g Unknown release
AperiodicParameters | pattern

/N

Unknown release pattern, but SporadicParameters
with minimum inter-arrival time

(MIT)

Example: Periodic Real-time Thread

RelativeTime period = new RelativeTime(5,0); // 5ms period

AbsoluteTime start =
Clock.getRealtimeClock () .getTime () .add(50,0); // now+50ms

PeriodicParameters pp = new PeriodicParameters (start, period) ;
int prio = PriorityScheduler.instance () .getNormPriority () ;
PriorityParameters priop = new PriorityParameters (prio);
RealtimeThread rtt = new RealtimeThread(priop, pp) {
public void run() {
while (workToDo) {
// do work

if ('RealtimeThread.waitForNextPeriod())
throw new Error (“Deadline missed”) ;

};
rtt.start();

Synchronization: Priority Inversion

Tries to acquire

g,a;gﬁ;gck - thread High priority task is

blocked indefinitely
'.‘ by low priority task

Medium priority tasks prevent
low level task from completing
and releasing lock

P1 -

Priority /

Lock Acquired

Priority Inversion
A Real World Example: Mars Pathfinder
* Spacecraft had two high priority periodic tasks
» Data distribution, bus scheduling
» Data distribution must complete before bus scheduling starts

» Low priority data gathering task acquired internal lock via
call to IPC mechanism

» Distribution task got blocked trying to acquire same lock

* Other medium priority tasks prevented data gathering task
from completing and releasing lock

* Bus scheduler task detects distribution task has not
completed in required time and takes action

* Reboots spacecraft!

Priority Inversion Avoidance in RTSJ

* Priority Inheritance Protocol (Required)

 Thread holding lock gets priority boosted to that of
blocking thread until lock is released

* No application code changes required

* Priority Ceiling Emulation Protocol (Optional)
* Each object lock is assigned a “ceiling” priority
* Highest active priority of any thread that will acquire it
» Thread sets its priority to the ceiling value when it
acquires the lock, and drops it when lock released
* Applies to Java object monitors only
* synchronized methods / blocks

Wait-Free Data Transfer Queues

» Allows non-blocking data exchange between no-heap
SO’s and heap-using SO’s

* [f NHRTT synchronizes with RTT then GC can preempt it
 WaitFreeReadQueue

= Single reader can perform non-blocking read

* Multiple writers can perform synchronized/blocking writes
e WaitFreeWriteQueue

» Single writer can perform non-blocking write

* Multiple readers can perform synchronized/blocking reads
c WaitFreeDequeue

 Combined WFRQ and WFWQ

Memory Management

» C/C++ memory management is completely under
program control

* malloc (), free ()

= Obvious disadvantages for memory leaks, invalid
pointers

- Java uses automatic memory management
+ Eliminates problems of £ree ()

* Introduces non-deterministic behavior to application as
normal GC cannot be controlled directly

RTSJ Memory Management

» (Goal: “to not interfere with the ability of real-time
code to exhibit deterministic behavior’

* Issues with normal heap-management in Java
» Allocation times can vary dramatically
» GC is unpredictable in its frequency and execution

» Real-time GC was not an option in 2000!

* RTSJ introduces the notion of allocation context
» The memory area used when code executes new

» Each area has different access and GC properties
* Access to physical memory

RTSJ Memory Areas

enter(Runnable r)

memoryConsumed()
MemoryArea memoryRemaining()
/\ newArray(...)

newlnstance(...)

I
HeapMemory ScopedMemory ImmortalMemory

AN

LTMemory VTMemory

Linear Time allocation Variable Time allocation

Immortal Memory

» Shared amongst all threads

* Objects allocated here are never garbage collected
» Live until end of application
* Objects referred to can also not be garbage collected!

* Three mechanisms for allocating immortal memory
* Implicit
« Static initialization, interned strings, string literals, Class objects
* Direct request
* newInstance (), newArray ()

* Execute code with immortal as current allocation context
- enter (), executelInArea|()

Scoped Memory

» Lifetime of an object is determined by the scope
* Objects exist as long as scope is “in use”

» When scope no longer “in use” it can be cleared and so is
‘empty” the next time it becomes “in use”

* Scope usage is governed by complex rules

» Single parent rule: all entry to a scope must be from the
same parent scope (or else heap or immortal)

* Assignment rules: an object in one memory area can not
hold references to objects in a shorter-lived area

» Scopes can't hold references to objects in a child scope
* Heap/Immortal can never hold references to objects in scope
* Run-time checks enforce the rules

Physical Memory

» Physical memory can be mapped to particular HW
« PhysicalMemoryManager
e ImmortalPhysicalMemory
* Scoped physical memory
e VTPhysicalMemory, LTPhysicalMemory

» Raw memory access allows read/write of any
address

* Primitive types only
 RawMemoryAccess

e RawMemoryFloatAccess

Java RTS Memory Management:
Real-time Garbage Collection

» RTGC allows latency guarantees to be extended to
RealtimeThreads (not just NHRTTS)

* Under certain conditions

* Critical RTT can preempt the GC

* And allocate from a reserved buffer
* And avoid GC induced latencies

* Cost of RTGC is paid for by non-critical threads
* No silver bullet!

* Very sophisticated, very configurable, very flexible

Event Based Programming

AsyncEvent
+ addHandler()
+ removeHandler()
«interface» * fire()
Schedulable 0..*| event

-

0..*| handler

AsyncEventHandler
+ handleAsyncEvent()

VAN

BoundAsyncEventHandler

Times and Clocks

HighResolutionTime (millis, nanos) pair

T T
AbsoluteTime RelativeTime
e T
Clock RationalTime | DEPRECATED

Clock.getRealtimeClock()

- High resolution
- Monotonic
- Time zero == UNIX epoch

Timers

Time based release of async event handlers

AsyncEvent

OneShotTimer PeriodicTimer

Resources

ttp://java.sun.com/javase/technologies/realtime/index.jsp
ttp://www.jcp.org (JSR-001, JSR-282)
ttp://www.rtsj.org

Bollella « Gosling + Brosgol + Dibble « Furr + Hardin + Turnbull
Concurrent e T
The Real-Time Real-Ti
Suacification and Real-lime
wo P rogl'a mmin g Platform Programmmg
for Java inJava

h 1 i\

e (|

Andy Wellings

JAVA SERIES 8
PETER C. DIBBLE

David Holmes
Senior Java Technologist
Java SE VM Real-Time
Sun Microsystems

