
Real-Time Java

1

David Holmes
Senior Java Technologist
Java SE VM Real-Time Group
Sun Microsystems

What is Real-Time?

● Simple definition: The addition of temporal constraints
to the correctness conditions of a program
● “When” is as important as “what”
● “A late answer is a wrong answer”

● “real-time” does not mean “real-fast”
● Going faster helps but ...

● Predictability is the key
● Non-real-time systems have many sources of

unpredictable behaviour
● Performance is based on the average-case

Example Temporal Constraints

● Deadline: started task must complete by a given time
● Once a request for a trade is received, it must execute

within 5ms
● Latency: difference between when an event happens

and when it is seen to have happened
● Stop button handler must respond within 500us of a press

● Jitter: Variance in the time interval between events
● The input sensor must be sampled every 1ms +/- 100us

Latency and Jitter

time

period

Latency
interval i interval i+1

Interval jitter = (max(interval) - min(interval))/2

Latency jitter = max(latency) - min(latency)

Logic execution

Latency is the measure of how long it takes the
system to respond to an event.
Jitter is the variability of a measured value.

For both: lower is better.

Why Real-Time Java?

● Same reasons as for using Java – but applied to
real-time application domains
● Traditional C/C++/assembler implementations difficult to

write, debug, maintain
● Real-time software loads are evolving

● Increase both in size and complexity
● Traditional, low-level programming no longer provides

the required level of abstraction
● Single solution for real-time and non-real-time code

● Re-use of people, tools, knowledge

Real-Time Specification for Java
(RTSJ) JSR-001
● Started in 1998. Experts from many communities

● Real-time systems, embedded systems, Ada, Java,
academia and industry

● The standard that defines how real-time behavior
must occur within Java technology
● Therefore, the only real-time Java technology!

● APIs and semantic enhancements which allow Java
code developers to correctly reason about and
control the temporal behavior of applications
● Better, high-level, portable abstractions
● 100% Java technology

JSR-1 Evolution

Real-Time
Specification for
Java (JSR-001)
proposal submitted

Many companies
represented: IBM, Sun,
Ajile, Apogee, Motorola,
Nortel, QNX, Thales,
TimeSys, WindRiver

2002 2005 2007 2008
JSR-001
approved by the
Java Community
Process

TimeSys
Reference
Implementation

RTSJ update
proposal
submitted
(JSR-282)

Several JSR-1
compliant products
(Apogee, IBM, Sun)

RTGC Available in
IBM's JVM

RTGC added to
Sun's JSR1-
compliant JVM

JSR-1 APIs
added to RTGC
enhanced JVMs

New Sun/IBM JSR

1998

Uses of RTSJ

Inverted pendulum
control problem

Boeing Scan-Eagle UAV

● Industrial automation
● Aeronautic/Aerospace

● Telecommunications
● Banking/Financial
● ...

Sun's Java Real-Time System

● Sun's implementation of the RTSJ
● 100% compliant with Java technology and RTSJ 1.0.2

● Java RTS 2.0 highlights
● Based on Java Platform, Standard Edition 5
● Runs on Solaris 10 OS,

● SPARC® technology, and x86/x64 platforms
● Relies on Solaris platform built-in real-time capabilities

● Java RTS 2.1 Early Access
● Runs on real-time Linux on x86

● SUSE Linux Enterprise Real Time 10
● Red Hat Enterprise MRG 1.0 (beta)

Java RTS 2.x Platforms

● From embedded single-board
computers

● To carrier-grade blade servers
● To enterprise servers

Java RTS Latency and Jitter Numbers

● Example of Java RTS 2.0 on Solaris 10 / SPARC
● Maximum Jitter: < 5 microseconds
● Maximum Latency: < 10 microseconds

● As good as the best commercial RTOS
● And often better, particularly on faster processors with

more memory
● But No Silver Bullet!

● Enhanced predictability comes at expense of throughput
● How much depends on platform, hardware, #CPUs, amount of

memory, JVM configuration and the application itself

RTSJ System Model

Non Real-Time
java.lang.Threads

Soft Real-Time
Realtime Threads
Real-Time GC*

Hard Real-Time
NoHeapRealtime Threads
Highest priority
Tightly bounded jitter
and latencies

Data Transfer Queues

* RTGC not specified by RTSJ

Key RTSJ Features

● Scheduling and Dispatching
● Managing schedulable objects removes unpredictable

scheduling
● Synchronization

● Priority inversion avoidance removes unpredictable delays
● Memory Management

● Alternatives to the heap to removes unpredictable GC
● Asynchronous events and handlers

● Event driven programming model
● Time, Clocks and Timers

Threads and Schedulable Objects
«interface»

java.lang.Runnable

«interface»
Schedulablejava.lang.Thread

RealtimeThread AsyncEventHandler

NoHeapRealtimeThread

RTSJ Scheduling

● Schedulable Object managed by a Scheduler
● One defined scheduler: PriorityScheduler

● Singleton: PriorityScheduler.instance()
● Execution eligibility based on an integer priority value

● Higher the value the higher the priority
● Minimum of 28 unique, consecutive priority levels

● Distinct from (and >) the 10 java.lang.Thread priorities
● getMinPriority(), getMaxPriority(),
getNormPriority()

Fixed Priority Preemptive Scheduling

● Highest priority schedulable object always runs
● Higher priority SO preempts lower priority one

● Schedulable object runs until it blocks
● No time-slicing! No “fairness”
● Caution: “greedy” real-time threads can “hang” your system!

● PriorityScheduler doesn’t change priority
except for priority inversion avoidance
● Contrast with dynamic scheduler: Earliest Deadline First

● All internal system queues maintained in priority order;
● Run queue, monitor entry queue, monitor wait-set

● Necessary for predictability, but not sufficient ...

Interrupts

Real-Time

System

Timesharing
/

Interactive
0-59

60-99

100-159

160-169

global priority range

 R
T

pr
io

rit
y

ra
ng

e

0-59

Java RTS Predictability on Solaris OS

● Uses Solaris Real-Time (RT) scheduling class
● 60 priority levels
● Highest range of thread

priorities in the system
● JVM locked into memory

● No page swap in/swap out
● Processor set bindings

● RTTs and NHRTs
● Class pre-loading and initialization
● Initialization Time Compilation (ITC)

● No runtime execution variance

Characterizing Schedulable Objects

● Schedulable objects have execution characteristics
● Scheduling behaviour, release pattern, memory constraints

● Characteristics represented by “parameter” objects:
● SchedulingParameters, ReleaseParameters

● Parameter objects “tag” the SO and contain data
● Priority, deadline, deadline-miss handler, cost

● An SO can link to one parameter object of a given kind
● Initially set at SO construction, can be modified later

● A parameter object can be associated with many SO’s
● Any change to the parameter object affects all the SO’s

Scheduling Parameters

PriorityParameters

ImportanceParameters

SchedulingParameters

Not used by
PriorityScheduler

Release Parameters

PeriodicParameters

SporadicParameters

ReleaseParameters

AperiodicParameters

Execution cost
Deadline
Cost overrun handler
deadline miss handler

Periodic release
pattern
Start time
Period

Unknown release pattern, but
with minimum inter-arrival time
(MIT)

Unknown release
pattern

Example: Periodic Real-time Thread
RelativeTime period = new RelativeTime(5,0); // 5ms period
AbsoluteTime start =
 Clock.getRealtimeClock().getTime().add(50,0); // now+50ms
PeriodicParameters pp = new PeriodicParameters(start, period);
int prio = PriorityScheduler.instance().getNormPriority();
PriorityParameters priop = new PriorityParameters(prio);
RealtimeThread rtt = new RealtimeThread(priop, pp) {
 public void run() {
 while (workToDo) {
 // do work
 if (!RealtimeThread.waitForNextPeriod())
 throw new Error(“Deadline missed”);
 }
 }
 ...
};
rtt.start();

Synchronization: Priority Inversion

Priority

Lock Acquired

Tries to acquire
same lock - thread
blocked

P3

P2

P1

Medium priority tasks prevent
low level task from completing
and releasing lock

High priority task is
blocked indefinitely
by low priority task

Priority Inversion
A Real World Example: Mars Pathfinder
● Spacecraft had two high priority periodic tasks

● Data distribution, bus scheduling
● Data distribution must complete before bus scheduling starts

● Low priority data gathering task acquired internal lock via
call to IPC mechanism

● Distribution task got blocked trying to acquire same lock
● Other medium priority tasks prevented data gathering task

from completing and releasing lock
● Bus scheduler task detects distribution task has not

completed in required time and takes action
● Reboots spacecraft!

Priority Inversion Avoidance in RTSJ

● Priority Inheritance Protocol (Required)
● Thread holding lock gets priority boosted to that of

blocking thread until lock is released
● No application code changes required

● Priority Ceiling Emulation Protocol (Optional)
● Each object lock is assigned a “ceiling” priority

● Highest active priority of any thread that will acquire it
● Thread sets its priority to the ceiling value when it

acquires the lock, and drops it when lock released
● Applies to Java object monitors only

● synchronized methods / blocks

Wait-Free Data Transfer Queues

● Allows non-blocking data exchange between no-heap
SO’s and heap-using SO’s
● If NHRTT synchronizes with RTT then GC can preempt it

● WaitFreeReadQueue
● Single reader can perform non-blocking read
● Multiple writers can perform synchronized/blocking writes

● WaitFreeWriteQueue
● Single writer can perform non-blocking write
● Multiple readers can perform synchronized/blocking reads

● WaitFreeDequeue
● Combined WFRQ and WFWQ

Memory Management

● C/C++ memory management is completely under
program control
● malloc(), free()
● Obvious disadvantages for memory leaks, invalid

pointers
● Java uses automatic memory management

● Eliminates problems of free()
● Introduces non-deterministic behavior to application as

normal GC cannot be controlled directly

RTSJ Memory Management

● Goal: “to not interfere with the ability of real-time
code to exhibit deterministic behavior”

● Issues with normal heap-management in Java
● Allocation times can vary dramatically
● GC is unpredictable in its frequency and execution

● Real-time GC was not an option in 2000!
● RTSJ introduces the notion of allocation context

● The memory area used when code executes new
● Each area has different access and GC properties
● Access to physical memory

RTSJ Memory Areas

MemoryArea

HeapMemory ScopedMemory

LTMemory VTMemory

ImmortalMemory

enter(Runnable r)
memoryConsumed()
memoryRemaining()
newArray(...)
newInstance(...)

Linear Time allocation Variable Time allocation

Immortal Memory

● Shared amongst all threads
● Objects allocated here are never garbage collected

● Live until end of application
● Objects referred to can also not be garbage collected!

● Three mechanisms for allocating immortal memory
● Implicit

● Static initialization, interned strings, string literals, Class objects
● Direct request

● newInstance(), newArray()
● Execute code with immortal as current allocation context

● enter(), executeInArea()

Scoped Memory

● Lifetime of an object is determined by the scope
● Objects exist as long as scope is “in use”
● When scope no longer “in use” it can be cleared and so is

“empty” the next time it becomes “in use”
● Scope usage is governed by complex rules

● Single parent rule: all entry to a scope must be from the
same parent scope (or else heap or immortal)

● Assignment rules: an object in one memory area can not
hold references to objects in a shorter-lived area
● Scopes can't hold references to objects in a child scope
● Heap/Immortal can never hold references to objects in scope

● Run-time checks enforce the rules

Physical Memory

● Physical memory can be mapped to particular HW
● PhysicalMemoryManager
● ImmortalPhysicalMemory
● Scoped physical memory

● VTPhysicalMemory, LTPhysicalMemory
● Raw memory access allows read/write of any

address
● Primitive types only
● RawMemoryAccess
● RawMemoryFloatAccess

Java RTS Memory Management:
Real-time Garbage Collection
● RTGC allows latency guarantees to be extended to

RealtimeThreads (not just NHRTTs)
● Under certain conditions

● Critical RTT can preempt the GC
● And allocate from a reserved buffer
● And avoid GC induced latencies

● Cost of RTGC is paid for by non-critical threads
● No silver bullet!

● Very sophisticated, very configurable, very flexible

Event Based Programming
AsyncEvent
+ addHandler()
+ removeHandler()
+ fire()

AsyncEventHandler
+ handleAsyncEvent()

«interface»
Schedulable 0..*

0..* handler

event

BoundAsyncEventHandler

Times and Clocks

HighResolutionTime

AbsoluteTime RelativeTime

RationalTime

(millis, nanos) pair

Clock DEPRECATED

Clock.getRealtimeClock()
- High resolution
- Monotonic
- Time zero == UNIX epoch

Timers

Timer

AsyncEvent

OneShotTimer PeriodicTimer

Time based release of async event handlers

Resources

http://java.sun.com/javase/technologies/realtime/index.jsp
http://www.jcp.org (JSR-001, JSR-282)
http://www.rtsj.org

Real-Time Java

37

David Holmes
Senior Java Technologist
Java SE VM Real-Time
Sun Microsystems

