
5/30/2008

TLA405 1

F#
Succinct, Expressive, Efficient 
Functional Programming for .NET

The F# Team

Microsoft Developer Division, Redmond

Microsoft Research, Cambridge

Topics

• What is F# about?

• Some Simple F# Programming

• A Taste of Parallel/Reactive with F#



5/30/2008

TLA405 2

F#: Combining Paradigms

Functional Functional 

Strong Typing

Succinct

Type Inference

Data Types and 
Patterns

1st Class 
Functions

Meta-
Programming

ObjectsObjects

.NET OO Model

Interoperable

Compact type-
inferred classes

.NET.NET

Visual Studio

Libraries

Tools

Concurrency

LINQ

ToolsTools

F# Compiler

F# Interactive

Visual Studio 
Integration

Math/Plot 
Bindings

Lex and Yacc

F#: The Combination Counts!

F#Statically 
Typed

Succinct

Scalable

Libraries

Explorative

Interoperable

Efficient



5/30/2008

TLA405 3

F#: Combining Paradigms

I've been coding in F# lately, for a production task. 

F# allows you to move smoothly in your programming style... 
I start with pure functional code, shift slightly towards an 
object-oriented style, and in production code, I sometimes 
have to do some imperative programming. 

I can start with a pure idea, and still finish my project with 
realistic code. You're never disappointed in any phase of the 
project!

Julien Laugel, Chief Software Architect, www.eurostocks.com

F#:  Influences

OCaml C#/.NETF#

Similar core 
language

Similar object
model



5/30/2008

TLA405 4

The Path to Mastering F# 

Topic Covered Today

Scoping and “let” ����

Tuples ����

Pattern Matching ����

Working with Functions ����

Sequences, Lists, Options ����

Records and Unions ����

Basic Imperative Programming ����

Basic Objects and Types ����

The F# Libraries �

Advanced Functional/Imperative ����

Advanced Functional/OO ����

Language Oriented Programming ���� (later)

Parallel and Asynchronous ���� (later)

Quick Tour

Comments 

// comment

(* comment *)

/// XML doc comment
let x = 1



5/30/2008

TLA405 5

Quick Tour

Booleans

not not not not exprexprexprexpr Boolean negation
exprexprexprexpr && && && && exprexprexprexpr Boolean “and”
exprexprexprexpr || || || || exprexprexprexpr Boolean “or”

Overloaded Arithmetic

x + yx + yx + yx + y Addition
x x x x ---- yyyy Subtraction
x * yx * yx * yx * y Multiplication
x / yx / yx / yx / y Division
x % yx % yx % yx % y Remainder/modulus
----xxxx Unary negation

Quick Tour: Types

Basic Types and Literals

sbyte = System.SByte 76y
byte       = System.Byte 76uy
int16      = System.Int16 76s
uint16     = System.UInt16 76us
int32      = System.Int32 76
uint32     = System.UInt32 76u
int64      = System.Int64 76L
uint64     = System.UInt64 76UL
string     = System.String "abc", @"c:\etc"
single     = System.Single 3.14f
double     = System.Double 3.14, 3.2e5
char       = System.Char '7'
nativeint = System.IntPtr 76n
unativeint = System.UIntPtr 76un
bool = System.Boolean true, false
unit       = Microsoft.FSharp.Core.Unit ()

Basic Type Abbreviations

int8    = sbyte
uint8   = byte
int = int32
float32 = single

float   = double 



5/30/2008

TLA405 6

Orthogonal & Unified Constructs

• Let “let” simplify your life…

let data = (1,2,3)

let f(a,b,c) = 
let sum = a + b + c 
let g(x) = sum + x*x 
g(a), g(b), g(c)

Bind a static value

Bind a static function

Bind a local value

Bind a local function

Type inference.  The safety
of C# with the 

succinctness of a scripting 
language

Demo: Let’s WebCrawl…



5/30/2008

TLA405 7

Orthogonal & Unified Constructs

• Functions: like delegates + unified and simple

( fun x -> x + 1)

let f(x) = x + 1

(f,f)

val f : int -> int

Anonymous
Function value

Declare a
function value

A pair 
of function values

predicate = 'a -> bool

send = 'a -> unit

threadStart = unit -> unit

comparer = 'a -> 'a -> int

hasher = 'a -> int

equality = 'a -> 'a -> bool

One simple 
mechanism, 

many 
uses

A function type

F# - Functional

let f x = x+1

let pair x = (x,x)

let fst (x,y) = x

let data = (Some [1;2;3], Some [4;5;6])

match data with

| Some(nums1), Some(nums2) -> nums1 @ nums2

| None, Some(nums)   -> nums

| Some(nums), None   -> nums

| None, None         -> failwith "missing!"



5/30/2008

TLA405 8

F# - Functional

List.map Seq.fold

Array.filter Lazy.force Set.union

Map    LazyList Events   Async...

[ 0..1000 ]      

[ for x in 0..10 -> (x, x * x) ]

[| for x in 0..10 -> (x, x * x) |]

seq { for x in 0..10 -> (x, x * x) }

Range
Expressions

List via query

Array via query

IEnumerable
via query

F# - Functional + Queries
SQL <@ { for customer in db.Customers do

for employee in db.Employees do

if customer.Name = employee.Name then

yield (customer.Name, employee.Address) } @>

SQL : Expr<seq<'a>> -> seq<'a>

SQL Database

LINQ SQLMetal



5/30/2008

TLA405 9

Immutability the norm…

Values may 
not be 

changed

Data is immutable 
by default

���� Not Mutate

���� Copy & Update

In Praise of Immutability

• Immutable objects can be relied upon

• Immutable objects can transfer between 
threads

• Immutable objects can be aliased safely

• Immutable objects lead to (different) 
optimization opportunities



5/30/2008

TLA405 10

F# - Imperative + Functional

open System.Collections.Generic

let dict = new Dictionary<int,string>(1000)

dict.[17] <- "Seventeen"

dict.[1000] <- "One Grand"

for (KeyValue(k,v)) in dict do

printfn "key = %d, value = %s" k v

Using .NET 
collections

F# - Imperative + Functional

open System.IO

open System.Collections.Generic

let readAllLines(file) =

use inp = File.OpenText file

let res = new List<_>()

while not(inp.EndOfStream) do

res.Add(inp.ReadLine())

res.ToArray()

“use” = 
C# “using”



5/30/2008

TLA405 11

F# - Sequences

open System.IO

let rec allFiles(dir) =

seq

{ for file in Directory.GetFiles(dir) do 

yield file 

for sub in Directory.GetDirectories(dir) do

yield! allFiles(sub) }

allFiles(@"C:\WINDOWS") |> Seq.take 100 |> show

Sequence 
Expressions and 
On -demand I/O

//F#

#light

open System

let a = 2

Console.WriteLine(a)

//C#

using System;

namespace ConsoleApplication1

{

class Program

{

static int a()

{

return 2;

}

static void Main(string[] args)

{

Console.WriteLine(a);            

}

}

}

Looks Weakly typed?
Maybe Dynamic?

Weakly Typed? Slow?



5/30/2008

TLA405 12

Typed Untyped

Efficient
Interpreted
Reflection 

Invoke

F#
Yet rich, 
dynamic

Yet succinct

F# - Imperative + Functional

open System.IO

let allLines =

seq { use inp = File.OpenText "test.txt"

while not(inp.EndOfStream) do

yield (inp.ReadLine()) }

allLines

|> Seq.truncate 1000

|> Seq.map (fun s -> uppercase s,s)

|> Seq.to_array

Read lines on 
demand

Pipelines



5/30/2008

TLA405 13

F# - Objects + Functional

type Vector2D(dx:double,dy:double) =

member v.DX = dx

member v.DY = dy

member v.Length = sqrt(dx*dx+dy*dy)

member v.Scale(k) = Vector2D(dx*k,dy*k)

Inputs to 
object 

construction

Exported 
properties

Exported 
method

F# - Objects + Functional

type Vector2D(dx:double,dy:double) =

let norm2 = dx*dx+dy*dy

member v.DX = dx

member v.DY = dy

member v.Length = sqrt(norm2)

member v.Norm2 = norm2

Internal (pre-
computed) values 

and functions



5/30/2008

TLA405 14

F# - Objects + Functional

type HuffmanEncoding(freq:seq<char*int>) =

...

< 50 lines of beautiful functional code>

...

member x.Encode(input: seq<char>) = 

encode(input)

member x.Decode(input: seq<char>) = 

decode(input)

Immutable 
inputs

Internal 
tables

Publish 
access

F# - Objects + Functional

type Vector2D(dx:double,dy:double) =

let mutable currDX = dx

let mutable currDX = dy

member v.DX = currDX

member v.DY = currDY

member v.Move(x,y) = 

currDX <- currDX+x

currDY <- currDY+y

Internal state

Publish 
internal state

Mutate internal 
state



5/30/2008

TLA405 15

F# - Language Oriented

type PropLogic = 

| And of PropLogic * PropLogic

| Not of PropLogic

| True

let rec Eval(prop) =

match prop with

| And(a,b) -> Eval(a) && Eval(b)

| Not(a) -> not (Eval(a))

| True -> true

Embedded 
Language

Crisp 
Semantics

F# - What’s it For?
• Language: Math like, succinct, functional

• Users have a mathematical background
• Shun infrastructure and “boilerplate”

• Quality: Performant, scalable, reliable, supported
• Live and mission critical apps
• Huge data loads

• Tool: Explorative, interactive, connected
• On the cutting edge, working in uncharted territory
• Experimentation and tuning are important
• Acquire and analyze multiple data sources

• .NET Libraries: HPC, Concurrency
• Heavy on computation, analysis, prediction, parallelism

12/07/200730



5/30/2008

TLA405 16

Demo: 3D Visualization

Case Study 

The adPredict Competition



5/30/2008

TLA405 17

The adCenter Problem

• Cash-cow of Search
• Selling “web space” at www.live.com

and www.msn.com.  
• “Paid Search” (prices by auctions)

• The internal competition focuses on 
Paid Search.

The Scale of Things

• Weeks of data in training : 
7,000,000,000 impressions, 6TB data

• 2 weeks of CPU time during training : 
2 wks × 7 days × 86,400 sec/day = 

1,209,600 seconds
• Learning algorithm speed requirement :

• 5,787 impression updates / sec

• 172.8 µs per impression update



5/30/2008

TLA405 18

F# and adCenter

• 4 week project, 4 machine learning experts

• 100million probabilistic variables 

• Processes 6TB of training data 

• Real time processing

AdPredict: What We Observed

• Quick Coding

• Agile Coding

• Scripting

• Performance

• Memory-Faithful

• Succinct

• Symbolic

• .NET Integration

F#’s powerful type 
inference means less 
typing, more thinking

Type-inferred code is 
easily refactored

“Hands-on” exploration. 

Immediate scaling to 
massive data sets

mega-data structures, 
16GB machines

Live in the domain , 
not the language

Schema compilation 
and “Schedules”

Especially Excel, SQL 
Server



5/30/2008

TLA405 19

F# - Concurrent/Reactive/Parallel 

• Concurrent : Multiple threads of execution

• Parallel : These execute simultaneously

• Asynchronous : Computations that complete "later"

• Reactive : Waiting and responding is normal

Why is it so hard?

• To get 50 web pages in parallel?

• To get from thread to thread?

• To create a worker thread that reads 
messages?

• To handle failure on worker threads?



5/30/2008

TLA405 20

Why isn’t it this easy?

let ProcessImages() =

Async.Run

(Async.Parallel

[ for i in 1 .. numImages -> ProcessImage(i) ] )

Why isn’t it this easy?

let task = 

async { ...

do! SwitchToNewThread ()

...

do! SwitchToThreadPool ()

...

do! SwitchToGuiThread ()

.... }



5/30/2008

TLA405 21

Some Foundation Technologies

• .NET/Win32 Threads

• System.Threading

• .NET Thread Pool

• .NET BackgroundWorker and SynchronizationContexts

• Parallel Extensions for .NET

F# - Concurrent/Reactive/Parallel 

• Concurrent : Multiple threads of execution

• Parallel : These execute simultaneously

• Asynchronous : Computations that complete "later"

• Reactive : Waiting and responding is normal



5/30/2008

TLA405 22

Taming Asynchronous I/O

Stream.BeginRead : ...

Stream.EndRead : IAsyncResult * ...

Target: make 
it easy to use 

Begin/End 
operations

Taming Asynchronous I/O

• Typical Control Flow

BeginRead

EndRead

Rest of Task

Compositional
thread-hopping?



5/30/2008

TLA405 23

Taming Asynchronous I/O

ReadAsync

Rest of Task

Simple Examples

Async.Parallel [ async { -> 2*2 + 3*6 };
async { -> 3 + 5 - 1 } ] 

Compute 22 
and 7 in 
parallel

Async.Parallel [WebRequest.Async "http://www.live.com ";
WebRequest.Async "http://www.yahoo.com";
WebRequest.Async "http://www.google.com" ]

Get these 
three web 

pages and wait 
until all have 
come back

let parArrMap f (arr: _[]) = 
Async.Run (Async.Parallel [| for x in arr -> async { -> f x } |])

Naive Parallel Array 
Map



5/30/2008

TLA405 24

Taming Asynchronous I/O

using System;

using System.IO;

using System.Threading;

public class BulkImageProcAsync

{

public const String ImageBaseName = "tmpImage-";

public const int numImages = 200;

public const int numPixels = 512 * 512;

// ProcessImage has a simple O(N) loop, and you can vary the number

// of times you repeat that loop to make the application more CPU-

// bound or more IO-bound.

public static int processImageRepeats = 20;

// Threads must decrement NumImagesToFinish, and protect

// their access to it through a mutex.

public static int NumImagesToFinish = numImages;

public static Object[] NumImagesMutex = new Object[0];

// WaitObject is signalled when all image processing is done.

public static Object[] WaitObject = new Object[0];

public class ImageStateObject

{

public byte[] pixels;

public int imageNum;

public FileStream fs;

}

public static void ReadInImageCallback(IAsyncResult asyncResult)

{

ImageStateObject state = (ImageStateObject)asyncResult.AsyncState;

Stream stream = state.fs;

int bytesRead = stream.EndRead(asyncResult);

if (bytesRead != numPixels)

throw new Exception(String.Format

("In ReadInImageCallback, got the wrong number of " +

"bytes from the image: {0}.", bytesRead));

ProcessImage(state.pixels, state.imageNum);

stream.Close();

// Now write out the image.

// Using asynchronous I/O here appears not to be best practice.

// It ends up swamping the threadpool, because the threadpool

// threads are blocked on I/O requests that were just queued to

// the threadpool. 

FileStream fs = new FileStream(ImageBaseName + state.imageNum +

".done", FileMode.Create, FileAccess.Write, FileShare.None,

4096, false);

fs.Write(state.pixels, 0, numPixels);

fs.Close();

// This application model uses too much memory.

// Releasing memory as soon as possible is a good idea, 

// especially global state.

state.pixels = null;

fs = null;

// Record that an image is finished now.

lock (NumImagesMutex)

{

NumImagesToFinish--;

if (NumImagesToFinish == 0)

{

Monitor.Enter(WaitObject);

Monitor.Pulse(WaitObject);

Monitor.Exit(WaitObject);

}

}

}

public static void ProcessImagesInBulk()

{

Console.WriteLine("Processing images... ");

long t0 = Environment.TickCount;

NumImagesToFinish = numImages;

AsyncCallback readImageCallback = new

AsyncCallback(ReadInImageCallback);

for (int i = 0; i < numImages; i++)

{

ImageStateObject state = new ImageStateObject();

state.pixels = new byte[numPixels];

state.imageNum = i;

// Very large items are read only once, so you can make the 

// buffer on the FileStream very small to save memory.

FileStream fs = new FileStream(ImageBaseName + i + ".tmp",

FileMode.Open, FileAccess.Read, FileShare.Read, 1, true);

state.fs = fs;

fs.BeginRead(state.pixels, 0, numPixels, readImageCallback,

state);

}

// Determine whether all images are done being processed.

// If not, block until all are finished.

bool mustBlock = false;

lock (NumImagesMutex)

{

if (NumImagesToFinish > 0)

mustBlock = true;

}

if (mustBlock)

{

Console.WriteLine("All worker threads are queued. " +

" Blocking until they complete. numLeft: {0}",

NumImagesToFinish);

Monitor.Enter(WaitObject);

Monitor.Wait(WaitObject);

Monitor.Exit(WaitObject);

}

long t1 = Environment.TickCount;

Console.WriteLine("Total time processing images: {0}ms",

(t1 - t0));

}

}

let ProcessImageAsync () =

async { let inStream = File.OpenRead(sprintf "Image%d.tmp" i)

let! pixels = inStream.ReadAsync(numPixels)

let pixels'   = TransformImage(pixels,i)

let outStream = File.OpenWrite(sprintf "Image%d.done" i)

do! outStream.WriteAsync(pixels')

do Console.WriteLine "done!" }

let ProcessImagesAsyncWorkflow() =

Async.Run (Async.Parallel

[ for i in 1 .. numImages -> ProcessImageAsync i ])

Processing 
200 images in 

parallel

8 Ways to Learn

• FSI.exe

• Samples Included

• Go to definition

• Lutz’ Reflector

• http://cs.hubfs.net

• Codeplex Fsharp 
Samples

• Books

• ML



5/30/2008

TLA405 25

Books about F#

Visit http://research.microsoft.com/fsharp
http://blogs.msdn.com/dsyme

Getting F#

• “Spring Refresh” just released (1.9.4)

• Focus on Simplicity, Regularity, Correctness

• CTP: Late Summer

• And then onwards towards “Visual Studio 
Next”



5/30/2008

TLA405 26

Questions & Discussion

© 2007 Microsoft Corporation. All rights reserved.
This presentation is for informational purposes only.
MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS SUMMARY.


