
The F# Team

Microsoft



� Asynchronous and Parallel Programming with 
F# Workflows

� Some other F# Language Oriented 
Programming Techniques

� Lots of Examples



F# is a .NET programming languageF# is a .NET programming languageF# is a .NET programming languageF# is a .NET programming language

F# is:

� Functional

� Imperative

� Object Oriented



� Emphasis is on whatwhatwhatwhat is to be computed not 
howhowhowhow it happens

� Data is immutable by default

� Ability to express higher-order functions



� Side effects

� Ability to declare and mutate variables

� Control flow (while, for, if, etc.)



� Classes and Structs

� Polymorphism and Inheritance

� Events 

� Succinct, type-inferred classes





…can be hard……can be hardcan be hard

Concurrent Concurrent 

programming programming 

with shared with shared 

statestate……



� ConcurrentConcurrentConcurrentConcurrent: Multiple threads of execution

� ParallelParallelParallelParallel: These execute simultaneously

� AsynchronousAsynchronousAsynchronousAsynchronous: Computations that complete "later"

� ReactiveReactiveReactiveReactive: Waiting and responding is normal



� To get 50 web pages in parallel?

� To get from thread to thread?

� To create a worker thread that reads 
messages?

� To handle failure on worker threads?



let ProcessImages() =

Async.Run 

( Async.Parallel 

[ for i in 1 .. numImages -> ProcessImage(i) ])



let task = 

async { ...

do! SwitchToNewThread()

...

do! SwitchToThreadPool()

...

do! SwitchToGuiThread()

.... }



OS ThreadsOS ThreadsOS ThreadsOS Threads

System.Threading System.Threading System.Threading System.Threading 

.NET Thread Pool.NET Thread Pool.NET Thread Pool.NET Thread Pool

Parallel Extensions for .NETParallel Extensions for .NETParallel Extensions for .NETParallel Extensions for .NET



Stream.BeginRead : ...

Stream.EndRead : IAsyncResult * ...

Target: 
make it easy 

to use 
Begin/End 
operations



◦ Typical Control Flow

BeginReadBeginReadBeginReadBeginRead

EndReadEndReadEndReadEndRead

Rest of TaskRest of TaskRest of TaskRest of Task

Compositional
thread-
hopping?



ReadAsyncReadAsyncReadAsyncReadAsync

Rest of TaskRest of TaskRest of TaskRest of Task



Async.Parallel [ async { -> 2*2 + 3*6 };
async { -> 3 + 5 - 1 } ] 

Compute 22 
and 7 in 
parallel

Async.Parallel [WebRequest.Async "http://www.live.com";
WebRequest.Async "http://www.yahoo.com";
WebRequest.Async "http://www.google.com" ]

Get these 
three web 
pages and 
wait until all 
have come 

back

let parArrMap f (arr: _[]) = 
Async.Run (Async.Parallel [| for x in arr -> async { -> f x } |])

Naive Parallel Array 
Map





using System;

using System.IO;

using System.Threading;

public class BulkImageProcAsync

{

public const String ImageBaseName = "tmpImage-";

public const int numImages = 200;

public const int numPixels = 512 * 512;

// ProcessImage has a simple O(N) loop, and you can vary the number

// of times you repeat that loop to make the application more CPU-

// bound or more IO-bound.

public static int processImageRepeats = 20;

// Threads must decrement NumImagesToFinish, and protect

// their access to it through a mutex.

public static int NumImagesToFinish = numImages;

public static Object[] NumImagesMutex = new Object[0];

// WaitObject is signalled when all image processing is done.

public static Object[] WaitObject = new Object[0];

public class ImageStateObject

{

public byte[] pixels;

public int imageNum;

public FileStream fs;

}

public static void ReadInImageCallback(IAsyncResult asyncResult)

{

ImageStateObject state = (ImageStateObject)asyncResult.AsyncState;

Stream stream = state.fs;

int bytesRead = stream.EndRead(asyncResult);

if (bytesRead != numPixels)

throw new Exception(String.Format

("In ReadInImageCallback, got the wrong number of " +

"bytes from the image: {0}.", bytesRead));

ProcessImage(state.pixels, state.imageNum);

stream.Close();

// Now write out the image.

// Using asynchronous I/O here appears not to be best practice.

// It ends up swamping the threadpool, because the threadpool

// threads are blocked on I/O requests that were just queued to

// the threadpool. 

FileStream fs = new FileStream(ImageBaseName + state.imageNum +

".done", FileMode.Create, FileAccess.Write, FileShare.None,

4096, false);

fs.Write(state.pixels, 0, numPixels);

fs.Close();

// This application model uses too much memory.

// Releasing memory as soon as possible is a good idea, 

// especially global state.

state.pixels = null;

fs = null;

// Record that an image is finished now.

lock (NumImagesMutex)

{

NumImagesToFinish--;

if (NumImagesToFinish == 0)

{

Monitor.Enter(WaitObject);

Monitor.Pulse(WaitObject);

Monitor.Exit(WaitObject);

}

}

}

public static void ProcessImagesInBulk()

{

Console.WriteLine("Processing images... ");

long t0 = Environment.TickCount;

NumImagesToFinish = numImages;

AsyncCallback readImageCallback = new

AsyncCallback(ReadInImageCallback);

for (int i = 0; i < numImages; i++)

{

ImageStateObject state = new ImageStateObject();

state.pixels = new byte[numPixels];

state.imageNum = i;

// Very large items are read only once, so you can make the 

// buffer on the FileStream very small to save memory.

FileStream fs = new FileStream(ImageBaseName + i + ".tmp",

FileMode.Open, FileAccess.Read, FileShare.Read, 1, 

true);

state.fs = fs;

fs.BeginRead(state.pixels, 0, numPixels, readImageCallback,

state);

}

// Determine whether all images are done being processed.

// If not, block until all are finished.

bool mustBlock = false;

lock (NumImagesMutex)

{

if (NumImagesToFinish > 0)

mustBlock = true;

}

if (mustBlock)

{

Console.WriteLine("All worker threads are queued. " +

" Blocking until they complete. numLeft: {0}",

NumImagesToFinish);

Monitor.Enter(WaitObject);

Monitor.Wait(WaitObject);

Monitor.Exit(WaitObject);

}

long t1 = Environment.TickCount;

Console.WriteLine("Total time processing images: {0}ms",

(t1 - t0));

}

}

let ProcessImageAsync () =

async { let inStream  = File.OpenRead(sprintf "Image%d.tmp" i)

let! pixels = inStream.ReadAsync(numPixels)

let pixels'   = TransformImage(pixels,i)

let outStream = File.OpenWrite(sprintf "Image%d.done" i)

do! outStream.WriteAsync(pixels')

do Console.WriteLine "done!" }

let ProcessImagesAsyncWorkflow() =

Async.Run (Async.Parallel 

[ for i in 1 .. numImages -> ProcessImageAsync i ])

Processing Processing Processing Processing 
200 images in 200 images in 200 images in 200 images in 

parallelparallelparallelparallel



let ProcessImageAsync(i) =

async { use inStream  = File.OpenRead(sprintf "source%d.jpg" i)

let! pixels = inStream. ReadAsync(numPixels)

let pixels'   = TransformImage(pixels,i)

use outStream = File.OpenWrite(sprintf "result%d.jpg" i)

do! outStream. WriteAsync(pixels')

do Console.WriteLine "done!" }

let ProcessImagesAsync() =

Async.Run ( Async.Parallel 

[ for i in 1 .. numImages -> ProcessImageAsync(i) ])

Read from the 
file,

asynchronously

“!”
= “asynchronous”

Write the result, 
asynchronously

This object 
coordinates

Equivalent F# 
code 

(same perf)

Generate the 
tasks and 

queue them in 
parallel

Open the file, 
synchronousl

y



using System;

using System.IO;

using System.Threading;

public class BulkImageProcAsync

{

public const String ImageBaseName = "tmpImage-";

public const int numImages = 200;

public const int numPixels = 512 * 512;

// ProcessImage has a simple O(N) loop, and you can vary the number

// of times you repeat that loop to make the application more CPU-

// bound or more IO-bound.

public static int processImageRepeats = 20;

// Threads must decrement NumImagesToFinish, and protect

// their access to it through a mutex.

public static int NumImagesToFinish = numImages;

public static Object[] NumImagesMutex = new Object[0];

// WaitObject is signalled when all image processing is done.

public static Object[] WaitObject = new Object[0];

public class ImageStateObject

{

public byte[] pixels;

public int imageNum;

public FileStream fs;

}

public static void ReadInImageCallback(IAsyncResult asyncResult)

{

ImageStateObject state = (ImageStateObject)asyncResult.AsyncState;

Stream stream = state.fs;

int bytesRead = stream.EndRead(asyncResult);

if (bytesRead != numPixels)

throw new Exception(String.Format

("In ReadInImageCallback, got the wrong number of " +

"bytes from the image: {0}.", bytesRead));

ProcessImage(state.pixels, state.imageNum);

stream.Close();

// Now write out the image.

// Using asynchronous I/O here appears not to be best practice.

// It ends up swamping the threadpool, because the threadpool

// threads are blocked on I/O requests that were just queued to

// the threadpool. 

FileStream fs = new FileStream(ImageBaseName + state.imageNum +

".done", FileMode.Create, FileAccess.Write, FileShare.None,

4096, false);

fs.Write(state.pixels, 0, numPixels);

fs.Close();

// This application model uses too much memory.

// Releasing memory as soon as possible is a good idea, 

// especially global state.

state.pixels = null;

fs = null;

// Record that an image is finished now.

lock (NumImagesMutex)

{

NumImagesToFinish--;

if (NumImagesToFinish == 0)

{

Monitor.Enter(WaitObject);

Monitor.Pulse(WaitObject);

Monitor.Exit(WaitObject);

}

}

}

public static void ProcessImagesInBulk()

{

Console.WriteLine("Processing images... ");

long t0 = Environment.TickCount;

NumImagesToFinish = numImages;

AsyncCallback readImageCallback = new

AsyncCallback(ReadInImageCallback);

for (int i = 0; i < numImages; i++)

{

ImageStateObject state = new ImageStateObject();

state.pixels = new byte[numPixels];

state.imageNum = i;

// Very large items are read only once, so you can make the 

// buffer on the FileStream very small to save memory.

FileStream fs = new FileStream(ImageBaseName + i + ".tmp",

FileMode.Open, FileAccess.Read, FileShare.Read, 1, true);

state.fs = fs;

fs.BeginRead(state.pixels, 0, numPixels, readImageCallback,

state);

}

// Determine whether all images are done being processed.

// If not, block until all are finished.

bool mustBlock = false;

lock (NumImagesMutex)

{

if (NumImagesToFinish > 0)

mustBlock = true;

}

if (mustBlock)

{

Console.WriteLine("All worker threads are queued. " +

" Blocking until they complete. numLeft: {0}",

NumImagesToFinish);

Monitor.Enter(WaitObject);

Monitor.Wait(WaitObject);

Monitor.Exit(WaitObject);

}

long t1 = Environment.TickCount;

Console.WriteLine("Total time processing images: {0}ms",

(t1 - t0));

}

}

let ProcessImageAsync () =

async { let inStream  = File.OpenRead(sprintf "Image%d.tmp" i)

let! pixels = inStream.ReadAsync(numPixels)

let pixels'   = TransformImage(pixels,i)

let outStream = File.OpenWrite(sprintf "Image%d.done" i)

do! outStream.WriteAsync(pixels')

do Console.WriteLine "done!" }

let ProcessImagesAsyncWorkflow() =

Async.Run (Async.Parallel 

[ for i in 1 .. numImages -> ProcessImageAsync i ])

Create 10, 000s of “asynchronous 
tasks”

Mostly queued, suspended and 
executed in the thread pool

Exceptions can be handled 
properly

Cancellation checks inserted 
automatically

Resources can be disposed 
properly on failure

CPU threads are not blocked



Don Syme



� Uses Computational LOP to make writing 
continuation-passing programs simpler and 
compositional

� Similar to techniques used in Haskell

� A wrapper over the .NET Thread Pool and 
.NET synchronization primitives

Async<T>Async<T>Async<T>Async<T> Exception continuation

Success continuation
Execution request

Cancellation continuation



async.Delay(fun () -> 

async.Bind(readAsync "cat.jpg", (fun image ->

async.Bind(async.Return(f image),(fun image2

async.Bind(writeAsync "dog.jpg",(fun () ->

async.Bind(async.Return(printfn "done!"),(fun () ->

async.Return())))))))))

async { let! image = ReadAsync "cat.jpg"

let image2 = f image

do! writeAsync image2 "dog.jpg"

do printfn "done!" 

return image2 }

Continuation/
Event callback

Asynchronous "non-
blocking" action

You're actually writing this (approximately):



Don Syme



� A custom programming language designed to 
solve a specific set of problems

� Examples
◦ Excel

◦ Windows Shell

◦ Regular Expressions

◦ HTML



� A style where you apply the ideas of a DSL in 
a general purpose programming language

◦ Bridges the gap between a separate, domain-
specific language and the code you write

◦ Ability to process problems described in a DSL



� XML a concreteconcreteconcreteconcrete language representation

� A parser tree or object model is an abstractabstractabstractabstract
language representation

� Asynchronous workflows are a integratedintegratedintegratedintegrated
language representation



XML, CSV, 
Text, Strings, 

JSON

Parse Trees

Almost-
Implicit

Parallelism

Queries

Exception 
Handling

Workflows

The language 
is in the data

The language 
is in the code



XML Libraries
RegExp Libraries

Lex/Yacc
...

Discriminated Unions

Pattern Matching

F# Computation 
Expressions

Expression Trees





� F# has capabilities which enable LOP
◦ Representing other languages in F#

◦ Extracting other languages into F#

◦ Allowing F# to process in other languages/domains

� LOP makes code that is cleaner and easier to 
understand



� Get F#
◦ http://research.microsoft.com/fsharphttp://research.microsoft.com/fsharphttp://research.microsoft.com/fsharphttp://research.microsoft.com/fsharp

◦ Includes add-in for VS2005 and VS2008

� Books
◦ Expert F# 
� Don Syme, Adam Granicz, and Antonio Cisternino

◦ Foundations of F#
� Robert Pickering

� Websites
◦ http://cs.hubfs.net/http://cs.hubfs.net/http://cs.hubfs.net/http://cs.hubfs.net/

◦ http://blogs.msdn.com/chrsmithhttp://blogs.msdn.com/chrsmithhttp://blogs.msdn.com/chrsmithhttp://blogs.msdn.com/chrsmith



Don Syme



open Microsoft.FSharp.Control.Mailboxes

let counter = 
MailboxProcessor.Create(fun inbox ->

/// Loop, receiving messages
let rec loop(n) = 

async { do printfn "n = %d" n
let! msg = inbox.Receive()
return! loop(n+msg) } 

/// Enter the loop
loop(0))





Don Syme

Visit http://research.microsoft.com/fsharp


