Advanced F#

Asynchronous, Parallel,
Language Oriented

The F# Team
Microsoft

Agenda

» Asynchronous and Parallel Programming with
F# Workflows

» Some other F# Language Oriented
Programming Techniques

» Lots of Examples

What is F# anyways?

F# is a .NET programming language

F# is:

» Functional

» Imperative

» Object Oriented

Functional

» Emphasis is on what is to be computed not
how it happens

» Data is immutable by default

» Ability to express higher-order functions

Imperative

» Side effects
» Ability to declare and mutate variables

» Control flow (while, for, if, etc.)

Object Oriented (and .NET)

» Classes and Structs
» Polymorphism and Inheritance
» Events

» Succinct, type-inferred classes

Asynchronous and Parallel
Programming

re
e

\ an be harrd

F# — Concurrent/Reactive/Parallel

Concurrent: Multiple threads of execution

v

Parallel: These execute s/imultaneously

v

Asynchronous: Computations that complete "/are/"

v

Reactive: Waiting and responding is normal

4

Why is it so hard?

To get 50 web pages in parallel?

v

To get from thread to thread?

v

To create a worker thread that reads
messages?

v

» To handle failure on worker threads?

Why isn’t it this easy?

let Processimages() =
Async.Run
(Async. Paral | el
[for i in1 .. num mages -> Processlnmage(i)])

g

Why isn’t it this easy?

let task =
async{ ...
do! Sw t chToNewThr ead()

do! SwitchToThr eadPool ()

do! Sw tchToGui Thr ead()
e }

Some Foundation Technologies

OS Threads
System.Threading
.NET Thread Pool

Parallel Extensions for .NET

Taming Asynchronous |/O

arget.
make it easy

to use
Begin/End
operations

inStream. (pixels,0,numBg \
: tCallback(fun 1ar -> conti

_e=null) |> 1gnore

'/ wait un 5 hed

: B CanSeek
—ontinuekw:
B CanTimeout

B CanWrite
= Close

E "' Createﬂ I::|_|HEF
1l i

St ream Begl nRead ;

St ream EndRead

| AsyncResult *

Taming Asynchronous |/O

5 - ompositionad
Typical Control Flow i

_—— = = = = = = = = = = = = hopping?

________________ || |,
:: ---------- BeginRead ::
! | ||

|| ||
|| ||

____________ _ = = =

.................... Rest of Task

Taming Asynchronous |/O

ReadAsync
A Rest of Task

Simple Examples Compute 22

and 7 in
parallel

| asyne i & 0 g dip ¢ three web

1 ;| pages and

wait until all

have come
back

Async. Paral | el

Async. Paral | el [WebRequest. Async "http://ww.live. cont;
WebRequest. Async "http://ww. yahoo. cont ;
WebRequest. Async "http://ww. googl e. cont]

let parArrMap f (arr: =
Async Rin (Async. Parallel 1| for X inarr > async { =1 x 1 11)

Naive Parallel Array

Map

Async Web Services

{

{

Taming Asynchronous |/0O

using System;
using System.IO;
using System.Threading;

public byte

async { let
let!
let
let
do!
do

let ProcessImageAsync () =

public class BulkImageProcAsync

public const String ImageBaseNa
public const int numImages = 20
public const int numPixels =

51

// ProcessImage has a simple O(
// of times you repeat that loo
// bound or more IO-bound.

public static int processImageR

// Threads must decrement NumIm
// their access to it through a
public static int NumImagesToFi
public static Object[] NumImage
// WaitObject is signalled when
public static Object[] WaitObje
public class ImageStateObject

pixels;

inStream
pixels
pixels'
outStream
outStream.

Console.WriteLine

let ProcessImagesAsyncWorkflow() =
Async.Run (Async.Parallel
[for i in 1 ..

public static void ReadInImageCallback(IAsyncResult a
{

ImageStateObject state =
Stream stream = state.fs;
int bytesRead = stream.EndRead(asyncResult);
if (bytesRead != numPixels)
throw new Exception(String.Format
("In ReadInImageCallback, got the wrong n
"bytes from the image: {@}.", bytesRead))
ProcessImage(state.pixels, state.imageNum);
stream.Close();

(ImageStateObject)asyncR

// Now write out the image.

// Using asynchronous I/O here appears not to be

// It ends up swamping the threadpool, because th|

// threads are blocked on I/O requests that were

// the threadpool.

FileStream fs = new FileStream(ImageBaseName + st
".done", FileMode.Create, FileAccess.Write, F
4096, false);

fs.Write(state.pixels, @, numPixels);

fs.Close();

much memory.

. X X tible is a good|
= File.OpenRead(sprintf "Image%d.tmp" i)

= inStream.ReadAsync(numPixels)

= TransformImage(pixels,i)

= File.OpenWrite(sprintf "Image%d.done" i)
WriteAsync(pixels")

"done!"™ }

numImages -> ProcessImageAsync i])

true);

public static void ProcessImagesInBulk()

Console.WriteLine("Processing images...

")

long t@ = Environment.TickCount;
NumImagesToFinish = numImages;
AsyncCallback readImageCallback = new

for

{

//

bool mustBIO
lock (NumImagesMuTe

}
if (mustBlock)

{

}

long t1 =

Determine whether all images are done being processed.

AsyncCallback(ReadInImageCallback);
(int 1 = @; i < numImages; i++)

ImageStateObject state = new ImageStateObject();

state.pixels = new byte[numPixels];

state.imageNum = i;

// Very large items are read only once, so you can make the

// buffer on the FileStream very small to save memory.

FileStream fs = new FileStream(ImageBaseName + i + ".tmp",
FileMode.Open, FileAccess.Read, FileShare.Read, 1,

state.fs = fs;

fs.BeginRead(state.pixels, ©, numPixels, readImageCallback,
state);

ntil all are

Processing
200 images in
parallel

if (NumImagesToFinish > ©
mustBlock = true;

Console.WriteLine("All work cro=—ai —
" Blocking until they complete. numLeft: {@}",
NumImagesToFinish);

Monitor.Enter(WaitObject);

Monitor.Wait(WaitObject);

Monitor.Exit(WaitObject);

Environment.TickCount;

Console.WriteLine("Total time processing images: {@}ms",

(t1 - te));

Equivalent F#
code
(same perf)

let ProcessimageAsync(i) =

async { e__inStream
pixels

let pixels'

This object use
coordinates do!
do

let ProcessimagesAsync() =
Async.Run (Async. Paral | el
[for i in 1..numlmages

= “asynchronous”

Taming AsynchrQig

Open the file,
synchronousl

O

y Read from the
file,
asynchronously

Write the result,
asynchronously

ProcessimageAsync(i)])

enerate the
tasks and
queue them in
parallel

{

using System;
using System.IO;
using System.Threading;

public class BulkImageProcAsync

public const String ImageBaseNa
public const int numImages
public const int numPixels

// ProcessImage has a simple O(
// of times you repeat that loo
// bound or more IO-bound.

public static int processImageR

// Threads must decrement NumIm
// their access to it through a
public static int NumImagesToFi
public static Object[] NumImage
// WaitObject is signalled when
public static Object[] WaitObje
public class ImageStateObject

{

Taming Asynchronous |/0O

public static void ReadInImageCallback(IAsyncResult a
{

Create 10, 000s of “asynchronous

ImageStateObject state = (ImageStateObject)asyncR
Stream stream = state.fs; tas ks”
int bytesRead = stream.EndRead(asyncResult);
if (bytesRead != numPixels)
throw new Exception(String.Format
("In ReadInImageCallback, got the wrong n
"bytes from the image: {@}.", bytesRead))

ProcessImage(state.pixels, state.imageNum); MOStIy queued’ SuspendEd and
strean. Close(); executed in the thread pool

// Now write out the image.

// Using asynchronous I/O here appears not to be

// It ends up swamping the threadpool, because th|

// threads are blocked on I/O requests that were

// the threadpool.

FileStream fs = new FileStream(ImageBaseName + st
".done", FileMode.Create, FileAccess.Write, F
4096, false);

fs.Write(state.pixels, @, numPixels);

fs.Close();

SrOC . e CIvOT e
// Very large items are read only once, so you can make the
// buffer on the FileStream very small to save memory.
FileStream fs = new FileStream(ImageBaseName + i + ".tmp",
FileMode.Open, FileAccess.Read, FileShare.Read, 1, true);
state.fs = fs;
fs.BeginRead(state.pixels, ©, numPixels, readImageCallback,
state);

}

public byte pixels;

much memory.
tible is a good

let ProcessImageAsync () =
async { let inStream
let! pixels

File.OpenRead(sprintf "Image%d.tmp" 1)
inStream.ReadAsync(numPixels)

let pixels' TransformImage(pixels,i)

let outStream = File.OpenWrite(sprintf "Image%d.done" i)
do! outStream.WriteAsync(pixels')

do Console.WriteLine "done!"™ }

properly

Cancellation checks inserted
e e e automatically

[for i in 1 .. numImages -> ProcessImageAsync i])

Resources can be disposed
properly on failure

CPU threads are not blocked

Demo: Asynchronous
Image Processing

Don Syme

How does it work?

» Uses Computational LOP to make writing
continuation-passing programs simpler and
compositional

4“2 Success continuation
Execution reques . . .
Exception continuation
Cancellation continuation
» Similar to techniques used in Haskell

» A wrapper over the .NET Thread Pool and
o NET synchronization primitives

F# “Workflow” Syntax

Asynchronous "non-

async {1 let! image ReadAsvnc "cat.jpg" blocking" action
let image2 = f image

do! writeAsync image2 "dog.jpg" Continuation/

do printfn "done!" Event callback
return image2 }

You're actually writing this (approximately):

async.Delay(fun () -»>
async.Bind(readAsync "cat.jpg", (fun image ->
async.Bind(async.Return(f image), (fun image2
async.Bind(writeAsync "dog.jpg",(fun () ->
async.Bind(async.Return(printfn "done!"),(fun () ->

async.Return())))))))))

Part |ll: More Language
Oriented Programming
Techniques

Don Syme

Domain Specific Language (DSL)

» A custom programming language designed to
solve a specific set of problems

» Examples
> Excel
> Windows Shell
- Regular Expressions
- HTML

Language Oriented Programming

» A style where you apply the ideas of a DSL in
a general purpose programming language

- Bridges the gap between a separate, domain-
specific language and the code you write

- Ability to process problems described in a DSL

Examples

» XML a concrete language representation

» A parser tree or object model is an abstract
language representation

» Asynchronous workflows are a integrated
language representation

LOP Taxonomy

The language
is in the data

I

The language
is in the code

Text, Strings,
SON

Concrete
Representations

Abstract

Representations ..
Implicit

Parallelism

Integrated

Representations Queries

Exception
Handling

Workflows

LOP Techniques XML Libraries

RegExp Libraries
Lex/Yacc

Concrete

Representations o, _
Discriminated Unions

Abstract Pattern Matching

Representations T GO o

Expressions

Integrated
Representations

Expression Trees

Onto Visual Studio!

Wrapping it Up

» F# has capabilities which enable LOP
- Representing other languages in F#
- Extracting other languages into F#
- Allowing F# to process in other languages/domains

» LOP makes code that is cleaner and easier to
understand

F# Resources

» Get F#

o http://research.microsoft.com/fsharp
> Includes add-in for VS2005 and VS2008

» Books

o Expert F#

- Don Syme, Adam Granicz, and Antonio Cisternino
- Foundations of F#

- Robert Pickering

» Websites

> http://cs.hubfs.net/
. ° http://blogs.msdn.com/chrsmith

Demo: Asynchronous
Web Crawling

Don Syme

F# - Erlang-style Message Agents

open M crosoft. FSharp. Control . M| boxes

l et counter =
Mai | boxProcessor. Create(fun 1 nbox ->

//l Loop, receiving messages
let rec loop(n) =
async { do printfn "n = %" n
let! nmsg = I nbox. Recei ve()
return! | oop(n+neg) }

[/l Enter the loop
| oop(0))

http://research.microsoft.com/fsharp

Questions

Don Syme

