
1

Hooking Stuff Together –

Software Development in

the Age of the Cloud

Gregor Hohpe

www.eaipatterns.com
www.conversationpatterns.com

1

Look Who’s Talking!

Distributed Systems / EAI/ SOA / Messaging

Software engineer at Google

Enterprise Integration Patterns
(Addison-Wesley)

Enterprise Solution Patterns
(Microsoft Patterns & Practices)

Integration Patterns
(Microsoft Patterns & Practices)

SOA Expertenwissen
(dpunkt Verlag)

www.eaipatterns.com

2

2

Yesterday’s Software Environment

• Collaborating services instead of
monolithic applications

• The cloud as middleware platform

• Services are all about interaction

• Connected, but loosely coupled

Today’s

3

Less is More?

NO Call Stack

NO Transactions

NO Promises

NO Certainty

NO Ordering Constraints

NO Assumptions

Scary? Yes!

Cool? Yes!

Way to go? Yes!

3

4

System A System B

A Simple Interaction

What if the response does not come?

5

Communication Problems

System A System B

Lost Request?

Lost Response?

System B Crashed?

Retry?

4

6

Delayed Response

System A System B

Executed Once?

Executed Twice?

7

Inherent State Uncertainty

System A is never 100% sure what state

System B is in

This problem does not occur in a monolithic system

Compare Byzantine General’s Problem

“Unreliable Messaging”

Attack? Attack?

Army 1 Army 2

Enemy

5

8

Total: $219.73

Still An Issue With HTTP

Hardware failure

Network failure

Time-outs

Partial response

Buy!

9

Isn’t This What Distributed Transactions Are For?

Require coordinator

Even 2 Phase Commit has windows of uncertainty

Not practical for long running interactions
• Locks not practical / economical

• Isolation not possible / practical

Usually not supported

Don’t scale

“Life Beyond Distributed Translations –
an Apostate’s Opinion”

--Pat Helland

6

10

You Got My Attention. So Now What?

Live with the uncertainty

Keep it as simple as possible

Interaction steps in the foreground

Asynchronous messaging rules

Think differently – new programming models

Run-time behavior is a big part of the game

11

Living with Uncertainty: Idempotency

“F5 Strategy” – If it does not work, try again

“At-least-once Delivery” a reality in loosely coupled

systems

Requires some state, e.g. “Which messages did I see

before?”

7

12

Living With Uncertainty: Failure Handling Strategies

Compensation
• “Execute” / “Compensate”

• Everyone executes optimistically

• Explicit back out strategy if errors occur

Reservation / Tentative operation
• “Try” / “Confirm” / “Cancel”

• All activities are tentative; outcome is promised i n good faith

Write-Off

“Starbucks does not use two-phase commit”

13

Keep it as simple as possible

Even simple things become complicated in a

distributed environment

If it looks complicated on paper it’s likely to be

impossible in practice

If you can’t understand it, other developers likely

won’t either

A well understood failure scenario can be better th an

an incomprehensible and unproven “failsafe” system

8

14

Focus on Interaction

In the OO world interaction is essentially free

Powerful structural mechanisms: inheritance,

composition, aggregation

In the cloud, more focus shifts to interaction.

Structural composition mechanisms are limited.

15

Interactions: Conversations

Series of related messages between parties

Not handled at lower layer

Endpoints keep some conversation state

Protocol design

Order

Invoice

Payment

Drinks

Internal State:Internal State:

Waiting for

Payment

Internal State:Internal State:

Processing

Payment

Internal State:

Making Drinks

9

16

Asynchronous Messaging

Exchange through messages, not RPC

Waiting for the results of an HTTP request is not a

smart use of a 3 GHz processor

Request and response message typically handled by

different parts of your program, even if the same T CP

connection

Reduced assumptions about timing and state

17

Think differently – New Programming Models

Application

Endpoint

Orchestration

Application
Transform

Rules

Conversation

Message
Document

“Architect’s Dream”

10

18

Think differently – New Programming Models

Application

Endpoint

Orchestration

Application
Transform

Rules

Conversation

Message
Document

Object-Document
Mapping

Process
Modeling

Event-based
Programming

Protocol
Design

Declarative
Programming

“Developer’s Nightmare”

19

“Doodleware” Only Limited Help

For example
• Graphical process editors

• Graphical transformation editors

We love pictures

Programming in pictures tedious
• Scalability issues

• Diff, Merge mostly unsupported

Often a thin veneer over a complex

(or unfamiliar) programming paradigm
“EAI Art”

11

20

Patterns – 10 Years After GoF

New programming models bring new patterns.

“Mind sized” chunks of information

(Ward Cunningham)

Human-to-human communication

Expresses intent (the “why” vs. the “how”)

Makes assumptions explicit

Observed from actual experience

21

Run-time Behavior is a Big Part of the Game

Some programming abstractions are great, e.g.

MapReduce

In a single-threaded call-stack machine, programmin g

model and execution model match fairly closely

In a highly distributed dynamic system, they are ve ry

different!

Monitoring, run-time analysis, and visualization

critically important

12

22

Run-time Behavior is a Big Part of the Game

Call Stack MapReduce
void a() {
b();

}

Void b() {
c();
d();

}

A B C D

map(in_key, data)
� list(key, value)

reduce(key, list(values))
� list(out_data)

23

My Work

Messaging Patterns (65)
• Messaging Systems

• Messaging Channels

• Message Construction

• Message Routing

• Message Transformation

• Messaging Endpoints

• System Management

Conversation Patterns
• Discovery

• Establishing a Conversation

• Multi-party Conversations

• Reaching agreement

• Resource Management

• Error Handling

www.eaipatterns.com

www.conversationpatterns.com

13

24

Multiple Service Providers

Request message can be consumed by more than one se rvice

provider

Point-to-Point Channel supports Competing Consumers, only

one service receives each request message

Channel queues up pending requests

Consumer

Provider 1

Provider 2
Request Channel

Reply Channel

25

Reply 1

Multiple Service Providers

Reply messages get out of

sequence

How to match request and

reply messages?

• Only send one request at a time

���� very inefficient

• Rely on natural order

���� bad assumption

Service 1
(slow)

Request 1

Service 2
(fast)

Consumer

Request 2

Reply 2

14

26

Pattern: Correlation Identifier

Equip each message with a unique identifier

• Message ID (simple, but has limitations)

• GUID (Globally Unique ID)

• Business key (e.g. Order ID)

Provider copies the ID to the reply message

Consumer can match request and response

Message
Identifier 1

2

Provider 1

Provider 2
Request Channel

Response Channel

1 2

12 12

1 2

12

Correlation
Identifier

Correlate
Request &

Reply

Consumer

27

Choose

Conversation Pattern: Dynamic Discovery

1. Broadcast request

2. Provider(s) consider whether to respond (load, suit ability)

3. Interested providers send responses

4. Requestor chooses “best” provider from responses

5. Requestor initiates interaction with chosen provide r

Examples: DHCP, TIBCO Repository discovery

ProviderProvider
1

ProviderProvider
2

ProviderProvider
3

Pub-Sub
Request

1

2
Consider

3 Respond
4

5 Interact

15

28

Renewal Confirm

Lease
(Renew Interval)

Conversation Pattern: Renewing Interest

“Lease” model

Heartbeat / keep-alive

Subscriber has to renew actively

Example: Jini

“Magazine Model”

Subscriber can be simple

Provider has to manage state for

each subscriber

Register

Renew Interest

Automatic Expiration

Renewal Request

Register

Renewal Request

Subscriber Provider

ProviderSubscriber

∆t

∆t

Fin

