
1

Software Visualization and
Model Generation

Erik Doernenburg Gregor Hohpe

Software Developer Software Engineer

ThoughtWorks, Inc. Google, Inc.

Where are the most defects?

2

Which way do the messages flow?

A picture says more than 1000 words

� The amount of information in current systems is

beyond what we can handle

� Often we are only interested in a specific angle

• Relationship between classes – not the entire source

• Number of messages flowing – not the message content

� Humans are good at a spotting patterns in images…

Being able to control large-scale systems is an illusion.
But we can observe what is happening…

3

Where do we get the picture from?

� Models created upfront convey a vision but usually

don’t reflect reality

� Generating a complete model for large systems is

nearly impossible

� Systems evolve locally, often uncontrolled

• Especially loosely coupled, dynamic systems (SOA)

� The best picture very much depends on the question

you are trying to answer

Need tools to create ad-hoc models more easily.

Example: Object Dependencies

�Source: Spring bean configuration

�SpringViz, a small XSLT sheet, maps bean

configuration to input for GraphViz Renderer

�Mapping/format hard-coded in style sheet

�Really simple but really useful

dao->factory
service->dao

components.xml components.dot components.png

<bean id=“dao”>
<ref bean=“factory>
…

XSLT Dot

4

Visualizing Software

A B

Renderer A B
XNodes: A, B

Edges: X(A->B)

running system

model

source code

InstrumentationScanner/Parser

diagram

Mapper

A pub X
B sub X

raw data

1. Select a meta-model

� “A model that describes a model”

• The elements a model can be composed of

• How to combine these elements

� Example: meta-model for a class diagram

• A class is a box with name, methods, fields,…

• Available connectors: association, inheritance,

aggregation…

• Rules: no circles in inheritance etc.

�Sounds more scientific than it really is

�Usually pick from a few popular candidates

5

Common meta models

Process Model
(e.g. Petri Net)

Clas

s

M1 M2 M3

Foo 3.4 3.8 6.5

Bar 5.0 0.0 10.0

… … … …

M1

M2

Foo

Bar

xyz

M1

Tree

Directed GraphMetrics (Quantitative)

2. Inspection / Instrumentation

Static Analysis

� Inspect System Design

� Source code

� Configuration repository

� Scan / Parse into

intermediate format

Dynamic Analysis

� Inspect Running System

� Profiling

� Listen to messages

� Log files

� Network sniffer

� Compiler decorator

6

3. Mapping to the model

�Map the gathered data onto the meta-model

� Example: Messaging System

• Capture send / receive actions

• Map onto directed graph

Mapper

Comp. Channel

A X

B Y

Comp. Channel

C X

C Y

Senders Receivers

Nodes: A, B, C
Edges: X(A�C)

Y(B�C)

Graph Model

4. Visualization / Validation

�Graph rendering with GraphViz Dot

• Automated graph layout tool

• Takes textual input, produces graphics

• Developed by AT&T, Common Public License

�Model validation

• Do not simply observe but also

verify & alert

• Enforce rules or best practices

• E.g., detect cycles, islands in a

(dependency) graph

7

Example: Code Organisation

�Static analysis: File metrics

�Shell script outputs file sizes in simple tree

metric format (tm3)

� InfoViz used to visualize/render

� InfoViz is an interactive tool

net…Build 64
net…BuildDeta
net…BuildMess

**/*.java filesizes.tm3 filesizes.png

package net.sourceforg

import org.joda.time.D
.sh Infoviz

Package Tree View

8

Example: System Complexity

� Static analysis: Source code analysis

� Code Crawler imports XMI and calculates metrics

• NOA, NOM, WLOC

� Renders polymetric System Complexity view

• Width, height, color used for metrics

• Position used for tree layout of inheritance

� Goal of this view is to classify inheritance hierarchies

• Subsystems

• Large stand-alone classes

� Can use other views to understand inner workings of

specific hierarchies

CodeCrawler screenshot

9

Example: Messaging

�Dynamic Analysis:

Instrument Message

Sender and Receiver

�Collect publication and

subscription data centrally

�Map to a Directed Graph

model

�Render with GraphViz Dot

�Validate against rules

A
Channel X

Endpoint Endpoint

B

A pub X B sub X

Control Bus

Tracker

Renderer

ImageA B

A � X

X � B

X

Pub-sub
Data

Model
Mapper
Model

Mapper

Nodes: A, B

Edges: X(A->B)

Graph
Model

GraphVizValidator

Errors /
Warnings !

Message Flow Graph

10

Message Flow Validation

Customer

Logger

order
Channel

orders
Channel

Example: Process Mining

�A system performs a series of activities for

each case (process instance)

�Dynamic analysis: log files of system

activities

�Goal: create a process model from running

system

�Meta-model: Petri Net

�Variety of algorithms and heuristics, e.g. α-

Algorithm (Wil v.d. Aalst)

11

Process Mining Example

Case Activity
1 A
2 A
3 A
3 B
1 B
1 C
2 C
4 A
2 B
2 D
5 A
4 C
1 D
3 C
3 D
4 B
5 E
5 D
4 D

A

B

C

E DMapper

Log File

Process Model

Place

Transition

Token

What’s next?

� Technique applies to many levels

• Single module source code

• Multiple modules

• Whole systems

�Diagrams hard to scale to huge systems

• Interactive zoom / drill-down

• Trends and outliers over time (e.g. source

repository)

�Systems become larger, effects happen over

time

• Aggregation is key

• Provide a "1,000 ft view"

12

Resources

� Tools

• http://www.graphviz.org (Dot)

• http://www.samoht.com/wiki/wiki.pl?SpringViz

• http://www.eaipatterns.com (Messaging

Visualization)

�Wil v.d. Aalst: Process Aware Information

Systems, Wiley, 2005

• www.processmining.org (Process Mining Tool)

�Michele Lanza’s work (CodeCrawler and

more)

• http://www.inf.unisi.ch/faculty/lanza

�Software Visualization by Stephan Diehl

Questions

