ThoughtWorks

A Couple of Ways to Skin an

Internet-Scale Cat

Jim Webber
http://jim.webber.name

ThoughtWorks
Roadmap

« A little Swedish

« Some home truths
- About Web Services and the Web

» Implementing Workflows
- The Starbuck’s example

» Q&A

ThoughtWorks
Jag heter J1m und kommer du

England
| like Web Services » | wrote this book,
- | am a MESTian at about WS-*
heart
‘ I like the Web Devel;ping Enterprise
- | have sympathies Web Services

An Architect’'s Guide

that lie with the

RESTafarians .

SANDEEP CHATTERJEE, ph.D. *%.
JAMESWEBBER, Pn.D.

ThoughtWorks
Jag heter Jim und kommer du
England

Mark Baker’s « | am “similarly

» | like Web Services |
consulting company, minded”
C/oactus

- | am a MESTian at |
heart —

Links l‘ ActiveWin Ars Technica @8 BBC News 4 Digg - Technology (@) Dilbert

Engadget f, slashdot

° ©¢ & | @ Integrate This | B v B v d v :»Pagev (hTools v
o I .I e t e We RU support them (see [2] again for an example of this).

_ I have sympathies W&
that lie with the
RESTafarians

Some Javascript toolkits already provide for a somewhat
similar approach, at least regarding the binding of HTML
extensions to script. Dojo includes "Dijits” (Dojo widgets)
which permits, for example, HTML forms to be extended
with attributes whose value explicitly references a Dojo-
specific scripted TextBox widget. Once the Dojo libraries
are linked in, the extended processing occurs. All Dijits
seem to be missing is to acknowledge the value of
standardizing their HTML extensions.

BildehOra
BitWorking

[m

HTML 5 (ne a bunch of WHAT WG specs) can also be seen
in a new light when considering its role in this proposed
approach. It defines (amoungst other things) a number of
extensions that aim to do in a declarative manner what is
currently done with script. For example, in-browser form
validation. The approach outlined here also suggests that
Relax, Everything Is Deeply there would be value in developing a script which could
Intertwingled . process the HTML 5 extensions for HTML 4 browsers.

'Ryan Tomayko (weblog) o ,
S Rb o Note: see also the TAG's view on declarative vs.
R AT O Y imperative, in their Rule of Least Power finding[3].

Stefan Tilkov's Random Stuff [1] Theodore Nelson. The Future of Information: Ideas,

The Now Economy . Connections and the Gods of Electronic Literature. ASCII
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Corp, 1997. Unpublished.

That’s me

[® € Internet | Protected Mode: Off %100%




=

T

o ThoughtWorks

Falling out of Love?
s | AEON
nuts! W

« Two things:

- WSDL
« |t’s an XML IDL for RPC
« Therefore ill-suited for Internet scale

Photo: Comedy Central

- All the superfluous WS-* standards and politics

« Too many dumb WS-KitchenSink standards
- Not everything needs to be an OASIS standard!

» Too many useful tools spent too long in standards wars
- 3 transactions specs? Anyone heard of consistency???

» Toolkits hide messaging model, provide leaky
abstractions over a distributed system




ThoughtWorks:
Why Web Services Rock’My World

Good Web Services/SOA are message-oriented
- TCP/IP is message-y and has scaled really well!

- SOAP Service Description Language (SSDL) provides message-
oriented metadata for services

- WSDL must die, die, die!
Business processes tend to be message-oriented
- Easy to map workflows onto

Loose coupling by default
End-to-end processing model
- Defined by SOAP, not WSDL!

Composable model

- You can ignore all the dumb stuff in the WS-* stack
- Except WSDL because the toolkits embrace it ® Photo: Comedy Central




Web Abuse
e

Tunnelling is
all a bunch of

o 'DNO .o’:fj approaches to| tree-hugging —
Web™ integration \__hippy crap!

- URI tunnelling N
- POX

- Both models treat HTTP as a transport - oty
- More or less

» Yet some of the Web jihadists don’t see this

» Both of these approaches overlay the Web
with their own (weak) models...




ThoughtWorks’

Web Tunnelling

Web Services tunnel SOAP over HTTP
- Using the Web as a transport only

- Ignoring many of the features for robustness
the Web has built in

Lots of Web people doing the same!

- URI tunnelling, POX approaches are the most
popular styles on today’s Web

_ | But they claim to be
Worse than SOAP! j “lightweight” and

RESTful

Less metadata!




ThoughtWorks:

URI Tunnelling Pattern

Web servers understand URIs
URIs have structure
Methods have sighatures

Can match URI structure to method
signature

— http://example.com/addNumbers?pl=10&p2=11

— 1nt. addNumbers (int 1, int j)' { return 1 + 7J; }




ThoughtWorks:

URI Tunnelling Strengths

Very easy to understand
Great for simple procedure-calls

Simple to code

- Do it with the servlet API, HttpListener,
IHttpHandler, Rails controllers, whatever!

Interoperable
- |t’s just URIs!

Cacheable - providing you don’t abuse
GET




ThoughtWorks:

URI Tunnelling Weaknesses

It’s brittle RPC!

Tight coupling, no metadata

- No typing or “return values” specified in the URI
Not robust - have to handle failure cases
manually

No metadata support

- Construct the URIs yourself, map them to the
function manually

You can use GET (but also POST)

- OK for functions, but contrary to the Web for
functions with side-affects




ThoughtWorks:

POX Pattern

Web servers understand how to process
requests with bodies

- Because they understand forms

And how to respond with a body
- Because that’s how the Web works

POX uses XML in the HTTP request and

response to move a call stack between
client and server




ThoughtWorks:

POX Strengths

Simplicity - just use HTTP POST and XML

Re-use existing infrastructure and
libraries

Interoperable
- 1t’s just XML and HTTP POST

Can use complex data structures
- By representing them in XML




ThoughtWorks:

POX Weaknesses

Client and server must collude on XML
payload

- Tightly coupled approach

No metadata support

- Unless you’re using a POX toolkit that
supports WSDL with HTTP binding (like WCF)

Does not use Web for robustness
Does not use SOAP + WS-* for robustness




,,,,,,,,,,,,,,,,,

= = ThoughtWorks’

RPC is Commonplace Today

» To err is human, to really mess things.. ’?’
need a computer %

» To really, really mess things up you ne
distributed system

- “A Note on Distributed Computing”

- Bad Web Services and Web integratior
have much in common

- It’s RPC!

- With latencies and nasty partial failure
characteristics




AT TR )

ThoughtWorks:

</rant>




ThoughtWorks:

Web Fundamentals

To embrace the Web, we need to
understand how it works

- Which means understanding RFC 2616

The Web is a distributed hypermedia model
- It doesn’t try to hide that distribution from you!
Our challenge:

- Figure out the mapping between our problem
domain and the underlying Web platform




= e T o LTS AATIS TN A /) .
=== ",4‘%%1 e zﬁﬁé«# Se=sseass: 2
N j

Zn ThoughtWorks

Why the Web was Inevitable

4

(Sir Tim is also a knight, but that’s not
important right now)




ThoughtWorks'

Why the Web was Inevitable

He lived in a hole in the ground

Underneath a big mountain
(in Switzerland)




ThoughtWorks:

Why the Web was Inevitable

And because he was a physicist (and
not yet a knight)...

...he only had a big atom-ga 1 M| P, N
smashing thing for P AL * Tl Sl
company




A T L )

Thought\Works:

Why the Web was Inevitable

And for a lonesome physicist
stuck underground with smashed
up atoms for company....

|Ie Edit Bookmark Conflgure Wmdow Help

1ref "http //geoc1t1es ccm/dava!83230duz/?a N]RY]ngnTaLfSGf
FONT STYLE~Tont-size:dpx font-family:Courier font-weight:he
qres

hgw? 5ais pus877oggqu 55919269vkq7OSmw

Vel 2cpl cads a4ks rZBr

1966 88wd G408 ¢99q w30

wdal 070y 713q 8332 2ekb

qq’03h]195k31504 hooi sqf8 c7na

2ths 5468 321v eldr 8u55

7048 3uy8 fosf 9asc 7502

kzl4 456 wid9 3z17 Kuy4

o ’ féab SG6x aczAzddef7 652q

.gopher just wasn’t

- k2g3pisicx 0BNE2F7X xv¥y9d3yd526 ocne
. - ' fe6R fs via3 G616 vk 60 4nen
gO]ng to Cut ] ° 3h2 phaw yaiu n6¥p 22v8
xqf 2a32 adal d350 v586
asz wza8 851 64g0d698h 3445
h84 51r368xe virsa ;700 ge’h 72a4
ggd cwfo 1479 t51 5a02 400w
nooqy ’5q1 719p 4a%9 cqaw 9167

c4422151bqbc S6hS12ws 3085 waqoq  5122319cn87




The Web broke the rules

!

&2

ThoughtWorks:




T ThoughtWorks
The REST Architectural Style

Fielding captured his interpretation of
the WWW architecture in his 2000 thesis

- REpresentational State Transfer (REST)
Since then the Web community has been

working on ways to make distributed
systems behave more like the Web

- Championed by some very vocal people!




s T A A AAT T A XM X

ThoughtWorks

RESTafarians?

.,- ¥ . 5%
"

Bob Marley Mark Baker,
Photo by PanAfrican.tv Photo by Paul Downey




ThoughtWorks
Web Characteristics

Scalable
Fault-tolerant
Recoverable
Secure

Loosely coupled

Precisely the same characteristics we
want in business software systems!




ThoughtWorks:

Tenets for Web-based Services

Resource-based

- Rather than service-oriented (the Web is not MOM!)
Addressability

- Interesting things should have names
Statelessness

- No stateful conversations with a resource
Representations

- Resources can be serialised into representations
Links

- Resources
Uniform Interface

- No plumbing surprises!




= ThoughtWorks’

Resources

A resource is something “interesting” in your system

Can be anything
- Spreadsheet (or one of its cells)
Blog posting
Printer
Winning lottery numbers
A transaction
- Others?
Making your system Web-friendly increases its surface

area
- You expose many resources, rather than fewer endpoints




ThoughtWorks:
Resource Representations

We deal with representations of resources

- Not the resources themselves
“Pass-by-value” semantics

- Representation can be in any format
Any media type
Each resource has one or more representations

- Representations like JSON or XML are good for Web-
based services

Each resource implements the uniform HTTP
interface

Resources have standard addresses (URIs)




- - ThoughtWorks
Resource Architecture
&Consumer
(Web Client) \ Uniform Interface
(Web Server)
- Y

~

B, F-
€ =

~

Logical Resources

Resource Representation
(e.g. XML document)

Physical Resources




ThoughtWorks:

The HTTP Verbs

Retrieve a representation of a resource: GET
Get metadata about an existing resource: HEAD

Create a new resource: PUT to a new URI,
or POST to an existing URI

Modify an existing resource: PUT to an
existing URI

Delete an existing resource: DELETE

See which of the verbs the resource
understands: OPTIONS

Aepol J19AI9S oM ©
g p0o03SJapun SuULdq JO POOYLIayL] Sulsealdaq

V




= ThoughtWorks:

HTTP Status Codes

The HTTP status codes provide metadata about the
state of resources

They are part of what makes the Web a rich platform
for building distributed systems
They cover five broad categories
- 1xx - Metadata
2xx - Everything’s fine
3xx - Redirection
4xx - Client did something wrong
5xx - Server did a bad thing

There are a handful of these codes that we need to
know in more detail




ThoughtWorks:

Common Status Codes
400 - Bad Request

100 - Continue 401 - Unauthorised

200 - OK 403 - Forbidden

201 - Created 404 - Not Found

301 - Moved 405 - Method Not

Permanently Allowed

303 - See Other 409 - Conflict

304 - Not Modified 412 - Precondition
Failed

500 - Internal Server

—



ThoughtWorks:

HTTP Headers

Headers provide metadata to assist
processing

- ldentify resource representation format
(media type), length of payload, supported
verbs, etc

HTTP defines a wealth of these

- And like status codes they are our building
blocks for robust service implementations




= ThOUght\NorkS®

Some Useful Headers
Authorization If-Modified-Since/Last-
- Contains credentials (basic, Modified
digest, WSSE, etc) - Used for conditional
- Extensible operations, GET
Content-Type opt]mlsatlon
- The resource Location .
representation form - Used to flag the location of
E.g. application/xml, a created/moved resource
application/xhtml+xml - In combination with:
ETag/If None-Match 201 Createti, 301 Movec(jj
Permanently, 302 Found,
Opaque identifier - think 307 Temporary Redirect.
“checksum” for resource 300 Multiple Choices, 303
representations See Other
- Used for conditional WWW-Authenticate

operations, GET

optimisation - Used with 401 status

Tells client what
authentication is needed




= i ThoughtWorks:

URIs

Resource URIs should be descriptive, predictable?
- http://spreadsheet/cells/a2,a9
- http://jim.webber.name/2007/06.aspx

Convey some ideas about how the underlying resources are
arranged

Can infer http://spreadsheet/cells/b0,b10 and
http://jim.webber.name/2005/05.aspx for example

URIs should be opaque?
- http://tinyurl.com/6é

- TimBL says “opque URIs are cool”

Convey no semantics, can’t infer anything from them
- Can’t introduce coupling 0 8
Newsflash: TAG decrees that
transparent URIs are OK after
all. Use with care!




ThoughtWorks:

URI Templates, in brief

Use URI templates to make your resource
structure easy to understand - transparent!

For Amazon S3 (storage service) it’s easy:

— http://s3.amazon.com/ {bucket-name}/{object-name}

/Bucket1 \ /Bucketz \
Object2

[Object1 ]
[Objectz ]

- [Object3 ]/ o »

[Object1




i ThoughtWorks’

URI Templates in Action

Once you can reason about a URI, you can
apply the standard HTTP techniques to it

- Because of the uniform interface

You have metadata for each resource

- OPTIONS, HEAD

- Which yield permitted verbs and resource
representations

Can program against this easily using Web
client libraries and regular expressions




ThoughtWorks:

Links

Connectedness is good in Web-based
systems

Resource representations can contain
other URIs

Links act as state transitions

Application (conversation) state is
captured in terms of these states




We have a comprehensive model for
distributed computing...

... but we still need a way of programming it.




ThoughtWorks:

Describing Contracts with Links

The value of the Web is its “linked-ness”

- Links on a Web page constitute a contract for
page traversals

The same is true of the programmatic
Web

Use Links to describe state transitions in

programmatic Web services

- By navigating resources you change
application state




ThoughtWorks:

Links are State Transitions

Select Confirm J—> Pay J~ Ship J
\0 Wishlist J

/




Links as AP
<confirm xmlns="...">

<link rel="payment"
href="https://pay"

type="application/xml"/>

<link rel="postpone"
href="https://wishlist"

type="application/xml"/>

</confirm>

ThoughtWorks:

B

Following a link
causes an action to
occur

This is the start of a
state machine!

Links lead to other
resources which also
have links

Can make this
stronger with
semantics

- Microformats




ThoughtWorks:
Microformats

Microformats are an example of little “s”
semantics

Innovation at the edges of the Web

- Not by some central design authority (e.g. W3C)
Started by embedding machine-processable
elements in Web pages

- E.g. Calendar information, contact information,
etc

- Using existing HTML features like class, rel,
etc




Microformats and Resources

Use Microformats to structure resources where
formats exist

- l.e. Use hCard for contacts, hCalendar for data
Create your own formats (sparingly) in other
places

- Annotating links is a good start

- <link rel="withdraw.cash" .../>

— <link rel="service.post"
type="application/x.atom+xml"
href="{post-uri}" title="some title">

The rel attribute describes the semantics of the

referred resource




ThoughtWorks:

“Subjunctive Programming”

With changing contracts embedded as
part of a resource, we can’t be too
imperative anymore

Think “subjunctive”

Code for Web integration by thinking
“what if” rather than “if then”

- The Web is declarative!




ThoughtWorks:

We have a framework!

The Web gives us a processing and
metadata model

- Verbs and status codes
- Headers

Gives us metadata contracts or Web
“APls”

- URI Templates
- Links




ThoughtWorks
Workflow

How does a typical enterprise workflow look
when it’s implemented in a Web-friendly
way?

Let’s take Starbuck’s as an example, the
happy path is:

- Make selection
Add any specialities

- Pay
- Wait for a while
- Collect drink




ThoughtWorks:

Workflow and MOM

 With Web Services we <
exchange messages
with the service

- Resource state is Order Drink
hidden from view y —_— @
: - Add S t 2
« Conversation state is betianiies >
all we know Order Confirm ation &
- Advertise it with -
SSDL, BPEL 5
- Uniform interface, Pay =
roles defined by SOAP G
Coffee!

- No “operations”




ThoughtWorks:
Web-friendly Workflow

What happens if workflow stages are
modelled as resources?

And state transitions are modelled as
hyperlinks or URI templates?

And events modelled by traversing links
and changing resource states?
Answer: we get Web-friendly workflow

- With all the quality of service provided by
the Web




T i i T A A 0 e e i a2 g
Zr - ey 9 15 5 3 i i i
st L o

= e ThoughtWOrkS®

Placing an Order

 Place your order by POSng it to a well-
known URI

- http://example.starbucks.com/order




ThoughtWorks

Placing an Order: On the Wire

» Response

201 Created

» Request

POST Jord Grrp 11 Location: http://

OST /order : starbucks.example.com/order?

Host: starbucks.example.com 1234

Content-Type: application/xml Content-Type: application/xml

Content-Length: ... Content-Length:

<order xmlns="urn:starbucks"> <order xmlns="urn:starbucks">
<drink>latte</drink> <drink>latte</drink>

</order> <link rel="payment"

ps://
starbucks.example.com/
payment/order?1234"

If we have a (private)
microformat, this can
become a neat API!

type="application/xml" />

</order>




& ThoughtWorks:

Whoops! A mistake

» | like my coffee to taste like coffee!

| need another shot of espresso
- What are my OPTIONS?

Request Response

OPTIONS /order?1234 HTTP 1.1 200 OK

update my

Host: starbucks.example.com Allow: GET, PUT Phew! | can
order, for now




ThoughtWorks:

Optional: Look Before You Leap

See if the resource has changed since you
submitted your order

- If you’re fast your drink hasn’t been
Drepared yet

Request Response
PUT /order?1234 HTTP 1.1 100 Continue-ij;?\\\\‘
Host: starbucks.example.com | can still PUT this B

resource, for now.
(417 Expectation

. Failed otherwise) )

Expect: 100-Continue




e 77 ThoughtW()rkS®

Amending an Order

» Add specialities to you order via PUT
- Starbucks needs 2 shots! =




ThoughtWorks

Amending an Order: On the Wire

» Request

PUT /order?1234 HTTP 1.1
Host: starbucks.example.com
Content-Type: application/xml
Content-Length:

<order xmlns="urn:starbucks">
<drink>latte</drink>
<additions>shot</additions>

<link rel="payment"
href="https://
starbucks.example.com/payment/
order?1234"
type="application/xml" />

</order>

» Response

200 OK

Location: http://
starbucks.example.com/order?
1234

Content-Type: application/xml
Content-Length:

<order xmlns="urn:starbucks">
<drink>latte</drink>
<additions>shot</additions>

<link rel="payment"
href="https://
starbucks.example.com/payment/
order?1234"
type="application/xml" />

</order>




= ThoughtWorks'

Statelessness

Remember interactions with resources are stateless

The resource “forgets” about you while you’re not
directly interacting with it

Which means race conditions are possible

Use If-Unmodified-Since on a timestamp to
make sure

- Oruse If-Match and an ETag

You’ll get a 412 Precondition Failed if you lost
the race

- But you’ll avoid potentially putting the resource into
some inconsistent state




ThoughtWorks:

Warning: Don’t be Slow!
Can only make changes until someone
actually makes your drink

- You’re safe if you use If-Unmodified-Since
or It-Match

- But resource state can change without you!

Request Response

PUT /order?1234 HTTP 1.1

Host: starbucks.example.com 409 Conflig
. Too slow! Someone else has
changed the state of my order
Request Response

OPTIONS /order?1234 HTTP 1.1 Allow: GET

Host: starbucks.example.com




ThoughtWorks:

Order Confirmation
» Check your order status by GETing it




o
i 7 5 5 5 015 i i i
L

Y B e o S = AW |
7 = 4

ThoughtWorks:

Order Confirmation: On the Wire

» Request

GET /order?1234 HTTP 1.1
Host: starbucks.example.com
Content-Type: application/xml
Content-Length:

Are they trying to tell me
something?

» Response

200 OK

Location: http://
starbucks.example.com/order?1234

Content-Type: application/xml
Content-Length:

<order xmlns="urn:starbucks">
<drink>latte</drink>
<additions>shot</additions>

<link rel="payment" href="https://
GUcks.example.com/order?1234"

type="application/xml" />
/order>




,,,,,,,,,,,,,,,,,

= ThoughtWorks:

Order Payment

» POST your payment to the order resource

https://starbucks.example.com/order?1234 —

)
| e

New resource!
https://starbucks.example.com/payment/order?1234




ThoughtWorks:

How did | know to POST?

« The client knew the URI to POST to from the link

» Verified with OPTIONS
- Just in case you were in any doubt ©

Request Response

OPTIONS /order?1234 HTTP 1.1 Allow: GET, POST

Host: starbucks.example.com




Order Payment:

» Request

POST /order?1234 HTTP 1.1
Host: starbucks.example.com
Content-Type: application/xml
Content-Length:

<payment xmlns="urn:starbucks">
<cardNo>123456789</cardNo>
<expires>07/07</expires>
<name>John Citizen</name>
<amount>4.00</amount>
</payment>

ThoughtWorks:
On the Wire

» Response

201 Created

Location: https://
starbucks.example.com/

payment/order?1234
Content-Type: application/xml
Content-Length:

<payment xmlns="urn:starbucks">
<cardNo>123456789</cardNo>
<expires>07/07</expires>
<name>John Citizen</name>
<amount>4.00</amount>
</payment>




e R e e e

i
i e L o

ThoughtWorks:

Check that you’ve paid

» Request » Response

GET /order?1234 HTTP 1.1 200 OK

Host: starbucks.example.com Content-Type: application/xml
Content-Type: application/xml Content-Length:

Content-Length:

My “API” has changed, <order xmlns="urn:starbucks">
because I’ve paid <drink>latte</drink>
enough now <additions>shot</additions>

</order>




ThoughtWorks:

What Happened Behind the Scenes?

Starbucks can use the same resources!

Plus some private resources of their own
- Master list of coffees to be prepared
Authenticate to provide security on some
resources

- E.g. only Starbuck’s are allowed to view
payments




ThoughtWorks:

Payment

« Only Starbucks systems can access the record of payments
- Using the URI template: http://.../payment/order?{order id}

« We can use HTTP authorisation to enforce this

Request

GET /payment/order?1234 HTTP 1.1

Host: starbucks.example.com

Request

GET /payment/order?1234 HTTP 1.1
Host: starbucks.example.com
Authorization: Digest username="jw
realm="starbucks.example.com"
nonce="..."
uri="payment/order?1234"

gop=auth
nc=00000001
cnonce="...
reponse="...
Opaque:" ... mw

n

n

Response

401 Unauthorized
WWW-Authenticate: Digest
realm="starbucks.example.com",
gop="auth", nonce="ab6b56...",
opaque="b6a9..."

Response
200 OK
Content-Type: application/xml

Content-Length:

<payment xmlns="urn:starbucks">
<cardNo>123456789</cardNo>
<expires>07/07</expires>
<name>John Citizen</name>
<amount>4.00</amount>

</payment>




ThoughtWorks:

Master Coffee List

- /orders URI for all orders, only accepts GET
- Anyone can use it, but it is only useful for Starbuck’s

- It’s not identified in any of our public APls anywhere, but the back-
end systems know the URI

Request Response

200 OK
Content-Type: application/xml

GET /orders HTTP 1.1 Content-Length:
<?xml version="1.0" 2>
Host: starbucks.example.com feed xmlns="http://www.w3.0rg/2005/Atom">

<title>Coffees to make</title>

<link rel="alternate" href="http://

example.starbucks.com/order.atom"/>

<updated>2007-07-10T09:18:4372</updated>
<author><name>Johnny Barrista</name></author>

[ Atom feed! <id>urn:starkbucks:45ftis90</id>

<entry>
<link rel="alternate" type="application/xml"
href="http://starbucks.example.com/order?1234" />
<id>urn:starbucks:a3tfpfz3</id>
</entry>

</feed>




ThoughtWorks

Finally drink your coffee...

o R o - >
T LAy SES ol A R DR
$5 vt NI ——r ¥ LR s
& : '\&\\}0" R I 0 ‘-‘ '.“i ...,..*;’n‘.‘ .
5 . .

Source; 'h_t'tp:i/ /1mages bUSln€SSWEEk.~C0m/SS/ 06 07/top .



— ThoughtWorks’

What did we learn from Starbuck’s?

HTTP has a header/status combination for every
occasion

APIs are expressed in terms of links, and links are
great!

- APP-esque APlIs

APIs can also be constructed with URI templates and
inference

XML is fine, but we could also use formats like Atom,
JSON gr even default to XHTML as a sensible middle
groun

State machines (defined by links) are important
- Just as in Web Services...




Summary

Both Web and WS-* are about externalising
state machines when done well

- Conversation state machines for Web Services
- Hypermedia state machines for Web

Use Web for massive scalability, fault
tolerance
- If you can tolerate higher latencies

The Web is now starting to feel the love
from middleware vendors too - beware!




Devel

Wel

Developing Web-based

Services
(working title)

Jim Webber
Savas Parastatidis
lan Robinson

Coming 2008...

ThoughtWorks

Blog:
http://jim.webber.name




