
5/28/2008

1

LINQ to SQL: Taking the

Boredom out of Querying

Joseph Albahari

www.albahari.com

Introduction

LINQ = Language INtegrated Query

= new features that was added to C#3, VB9 and .NET
Framework 3.5 for querying databases and local collections

Brings static type safety to database queries

Simple and composable

A universal querying language that can work across SQL, XML,
local collections and third-party APIs such as SharePoint

5/28/2008

2

SQL
select * from customer where FirstName = 'Jim'

XPath
customers/customer[FirstName='Jim']

C# 2.0
Array.Find (customers, delegate (Customer c) { return c.FirstName == "Jim"; })

CAML
<Query>

<Where>

<Eq>

<FieldRef Name="FirstName"/>

<Value Type="Text">Jim</Value>

</Eq>

</Where>

</Query>

Proliferation of Querying APIs

What’s wrong with SQL?

• Lack of static type checking in embedded SQL queries

new SqlCommand ("select * from Customer where Name=@p0");

• Awkward to dynamically compose queries

• Plumbing code in parameterization & marshalling data

• Difficulty in working with hierarchical data

• Has not been redesigned in decades

5/28/2008

3

Pagination

SELECT TOP 20 UPPER(Customer.Name)

FROM Customer

WHERE (NOT (EXISTS (

SELECT NULL

FROM (

SELECT TOP 40 ID

FROM Customer c1

WHERE c1.Name LIKE 'A%'

ORDER BY c1.Name

) AS c2

WHERE Customer.ID = c2.ID

))) AND (Customer.Name LIKE 'A%')

ORDER BY Customer.Name

How does LINQ do better?

var query =

from c in db.Customers

where c.Name.StartsWith ("A")

orderby c.Name

select c.Name.ToUpper();

var thirdPage = query.Skip(40).Take(20);

• Simplicity

• Static type safety

• Composability (thanks to deferred execution)

Query syntax is syntactic sugar.

5/28/2008

4

,

Joseph Albahari

Compiler Translation

var query = db.Customers

.Where (c => c.Name.StartsWith ("A"))

.OrderBy (c => c.Name)

.Select (c => c.Name.ToUpper());

var thirdPage = query.Skip (40).Take (20);

The db variable is a window into an object relational
mapper.

5/28/2008

5

Creating a DataContext

db = new MyDB ("connection string");

var query = db.Customers

.Where (c => c.Name.StartsWith ("A"))

.OrderBy (c => c.Name)

.Select (c => c.Name.ToUpper());

var thirdPage = query

.Skip (40)

.Take (20);

Typed DataContext

public class MyDB : DataContext

{

public Table<Customer> Customers

{

get { return GetTable<Customer>(); }

}

}

[Table]

public class Customer

{

[Column(IsPrimaryKey=true)]

public int ID;

[Column]

public string Name;

}

[Association (OtherKey="CustomerID")]

public EntitySet<Purchase> Purchases = new EntitySet<Purchase>();

5/28/2008

6

Object Relational Mappers allow Associations

[Table]

public class Purchase

{

[Column(IsPrimaryKey=true)]

public int ID;

[Column]

public int CustomerID;

[Column]

public string Description;

[Column]

public decimal Price;

EntityRef<Customer> custRef;

[Association (Storage="custRef",ThisKey="CustomerID",IsForeignKey=true)]

public Customer Customer

{

get { return custRef.Entity; } set { custRef.Entity = value; }

}

}

Querying through Associations

from c in db.Customers

where c.Purchases.Count() >= 2

select new

{

c.Name,

TotalSpend = c.Purchases.Sum (p => p.Price)

}

5/28/2008

7

Previous Query, in One Step

var thirdPage = db.Customers

.Where (c => c.Name.StartsWith ("A"))

.OrderBy (c => c.Name)

.Select (c => c.Name.ToUpper())

.Skip (40)

.Take (20);

thirdPage evaluates to an expression tree.

LINQ to SQL Queries are Expression Trees

5/28/2008

8

Sequence�Sequence Query Operators

var thirdPage = db.Customers

.Where (c => c.Name.StartsWith ("A"))

.OrderBy (c => c.Name)

.Select (c => c.Name)

.Skip (40)

.Take (20);

Set Operators

db.Customers.Select (c => c.Name)

.Union (

db.Purchases.Select (p => p.Description))

Concat, Union,

Intersect, Except

5/28/2008

9

The Join Operator

from c in db.Customers

join p in db.Purchases on c.ID equals p.CustomerID

var grouped =

from p in db.Purchases

group p by p.Date.Year;

The Group Operator

Nested SequenceGroup

Operator

Sequence

5/28/2008

10

The SelectMany Operator

var flattened =

from g in grouped

from p in g

select p;

SequenceSelectMany

Operator

Nested Sequence

from c in db.Customers

from p in c.Purchases

select c.Name +

" -- " +

p.Description;

SequenceSelectMany

Operator

Nested Sequence

The SelectMany Operator

5/28/2008

11

Element/Quantifiers/Aggregation Operations

Element Operators

First, Single

Quantifiers

All, Any, Contains

Aggregation Operators

Aggregate, Average, Count, Sum, Max, Min

db.Customers.First (c => c.ID == 123);

bool anyInDebt =

db.Customers.Any (c => c.Balance < 0);

decimal totalBalance =

db.Customers.Sum (c => c.Balance);

Lambda Expressions

db.Customers.Where (c => c.Name.StartsWith ("a"))

from c in db.Customers

where c.Name.StartsWith ("a")

select c

5/28/2008

12

Lambda Expressions

db.Customers.Where (c => c.Name.StartsWith ("a"))

Subqueries

db.Customers.Where (c => c.Purchases.Any (p => p.Price > 1000))

5/28/2008

13

Projecting Subsequences

Nested SequenceSelect

Operator

Nested Sequence

Customers

Subqueries - Select

from c in db.Customers

select new

{

c.Name,

HighValuePurchases =

from p in c.Purchases

where p.Price > 1000

orderby p.Date

select new { p.Description, p.Price }

}

Nested SequenceSelect

Operator

Nested Sequence

5/28/2008

14

Nested SequenceNested Sequence

Subqueries - Select

Select

Operator

from c in db.Customers

select new

{

c.Name,

Purchases =

from p in db.Purchases

where p.Price > 1000 && p.CustomerID == c.ID

orderby p.Date

select new { p.Description, p.Price }

}

Customers

Purchases Where

OrderBy

Select

Select

Sample Queries

Preloaded in LINQPad:

www.linqpad.net

5/28/2008

15

Collateral Damage

• Losses in translation
– certain kinds of SQL query hard to achieve

• workaround = table-value functions

– locking and optimization hints impossible

• C# expressions with no SQL translation

• Limits in expression composability
– workaround: www.albahari.com/nutshell/extras.html

• Mistaking local for interpreted queries

• Leaks in abstraction
– local & LINQ to SQL queries may need to be formulated differently for

maximum efficiency

• Performance cost
– Conversion time

• workaround = compiled queries & metamodel sharing

– Non-optimal SQL
• workaround = use SQL or SPs for those cases

• Updates that don’t involve retrieving data first

Verdict

• LINQ to SQL has more than halved the middle tier
development time, in my own experience

• A LINQ to SQL middle tier is smaller, tidier and safer

• Mix and match where necessary: sometimes old-
fashioned SQL is best

• The technology has further promise

– Provider independence

– LINQ to Entities

– Third party Object Relational Mappers

5/28/2008

16

Resources

MS LINQ Forum:
http://tinyurl.com/4y93ta

PredicateBuilder & LINQKit:
www.albahari.com/nutshell/extras.html

LINQPad:
www.linqpad.net

Joseph Albahari www.albahari.com

C# 3.0 in a Nutshell

• C# 3.0 Language

• CLR

• Core .NET Framework

• LINQ to Objects

• LINQ to SQL

• LINQ to XML

C# 3.0

Pocket Reference

• C# 3.0 Language

• LINQ: distilled summary

LINQ

Pocket Reference

• Learn LINQ

in 170 pages

• LINQ to Objects

• LINQ to SQL

• LINQ to XML

