Joseph Albahari
www.albahari.com

LINQ to SQL: Taking the
Boredom out of Querying

Introduction

LINQ = Language INtegrated Query

= new features that was added to C#3, VB9 and .NET
Framework 3.5 for querying databases and local collections

Brings static type safety to database queries
Simple and composable

A universal querying language that can work across SQL, XML,
local collections and third-party APIs such as SharePoint

5/28/2008

5/28/2008

Proliferation of Querying APIs

SQL
select * from customer where FirstName = 'Jim'

XPath
customers/customer[FirstName="Jim']

C#2.0
Array.Find (customers, delegate (Customer c) { return c.FirstName =="Jim"; })

CAML
<Query>
<Where>
<Eg>
<FieldRef Name="FirstName"/>
<Value Type="Text">Jim</Value>
</Eq>
</Where>
</Query>

What’s wrong with SQL?

e Lack of static type checking in embedded SQL queries

new SglCommand ("select * from Customer where Name=@p0");

¢ Awkward to dynamically compose queries
® Plumbing code in parameterization & marshalling data
e Difficulty in working with hierarchical data

¢ Has not been redesigned in decades

Pagination
4 Go00000000000 glew
Previous 1 2 34 5 678 910111 Next

SELECT TOP 20 UPPER(Customer.Name)
FROM Customer
WHERE (NOT (EXISTS (
SELECT NULL
FROM (
SELECT TOP 40 ID
FROM Customer cl
WHERE c1.Name LIKE 'A%’
ORDER BY c1.Name
) AS c2
WHERE Customer.ID = c2.ID
))) AND (Customer.Name LIKE 'A%')
ORDER BY Customer.Name

How does LINQ do better?

var query =
from ¢ in db.Customers
where c.Name.StartsWith ("A")
orderby c.Name
select c.Name.ToUpper();

var thirdPage = query.Skip(40).Take(

* Simplicity
» Static type safety

» Composability (thanks to deferred execution)

Query syntax is syntactic sugar.

5/28/2008

from H identifier) in (enumerable-expr
fer)in)
%{ascending
orderby expr G
descending

query continuation

orderby-
clause

SelectMany

where
boolean-expr

group-
clause

let identifier
= expr

),
—~—

C#3.0in a Nutshell

© 2007 O'Reilly Media Inc. join-clause
Joseph Albahari group by

. s inner "\
join identifier 1non

equals % - o
i

Compiler Translation

var query = db.Customers
.Where (c => c.Name.StartsWith ("A"))

.OrderBy (c => c.Name)
.Select (c => c.Name.ToUpper());

var thirdPage = query.Skip (40).Take (20);

The db variable is a window into an object relational
mapper.

5/28/2008

5/28/2008

Creating a DataContext

db = new MyDB ("connection string");

var query = db.Customers
.Where (c => c.Name.StartsWith ("A"))
.OrderBy (c => c.Name)
.Select (c => c.Name.ToUpper());

var thirdPage = query
.Skip (40)
.Take (20);

Typed DataContext

public class MyDB : DataContext

{

public Table<Customer> Customers

{

}
}

[Table]
public class Customer

{
[Column(IsPrimaryKey=true)]
public int ID;

get { return GetTable<Customer>(); }

[Column]
public string Name;

[Association (OtherKey="CustomerID")]
public EntitySet<Purchase> Purchases = new EntitySet<Purchase>();

Object Relational Mappers allow Associations

[Table]
public class Purchase

{
[Column(IsPrimaryKey=true)]
public int ID;

[Column]
public int CustomerID;

[Column]
public string Description;

[Column]
public decimal Price;

EntityRef<Customer> custRef;

[Association (Storage="custRef",ThisKey="CustomerID",IsForeignKey=true)]
public Customer Customer

{
get { return custRef.Entity; } set { custRef.Entity = value; }

¥

Querying through Associations

from ¢ in db.Customers
where c.Purchases.Count() >= 2
select new
{
c.Name,
TotalSpend = c.Purchases.Sum (p => p.Price)

5/28/2008

Previous Query, in One Step

var thirdPage =
.Where (c =>
.OrderBy (c =>
.Select (c =>

db.Customers
c.Name.StartsWith ("A"))
c.Name)
c.Name.ToUpper())

.Skip (40)
.Take (20);

thirdPage evaluates to an expression tree.

LINQ to SQL Queries are Expression Trees

|Queryable<string> X
_ | Expression s MethodCallExpression
thirdPage LELCI S > 20

MethodCallExpression
T > 40

Expression
Tree

s \on

i E‘L‘“e ------) MethodCallExpression
MethodCallExpression Strlng ToUpper {------3 MemberExpression
\c\xs\o“‘ T Uwe(\\ C N
[P R M—— ustomer. ame

: MethodCaHExpresswon
; (C\ls“"“e
Table<Customer> QEEEEEEEEEE Where f---------3

““ess\" -------- > MemberExpression
MelhodCa[IExpressmn “5\0 e \ = Customer Name
OrderBy ---------- \c
ﬁtessm By MethodCallExpression
- >
Customer Name

Method call expressions Lambda expressions

5/28/2008

Sequence—>Sequence Query Operators

Sequence Query Sequence

Operator

-

>

var thirdPage = db.Customers
.Where (c => c.Name.StartsWith ("A"))
.OrderBy (c => c.Name)
.Select (c => c.Name)
.Skip (40)
.Take (20);

db.Customers 4 >/) >/) >/> >/)
O):

Q_ where OO orderBy OO Select OO skip OO Take

Set Operators

Sequence
- Query Sequence
Operator >
Sequence
Concat, Union, dﬁ;‘izztc()mer's.Select (c => c.Name)
Intersect, Except &b.Pur‘chases.Select (p => p.Description))

db.Customers

db.Purchases

5/28/2008

The Join Operator

Sequence

> Query Sequence >
Operator
Sequence
from ¢ in db.Customers
join p in db.Purchases on c.ID equals p.CustomerID
db.Customers
O
db.Purchases
@ O
The Group Operator
Sequence Group Nested Sequence
—
Operator
var grouped =
from p in db.Purchases 2006 2007 2008

group p by p.Date.Year; Purchases ~ Purchases ~ Purchases

All Purchases _4\/'(7; 7;

>

Q 00 o0

O Q)é GroupBy ()

5/28/2008

The SelectMany Operator

Nested Sequence SelectMany Sequence
—>
Operator

—>

var flattened =
from g in grouped
from p in g
select p;

2006 2007 2008
Purchases Purchases Purchases

.40 b v

o0 00

All Purchases

Q\oh’

SelectMany Q

The SelectMany Operator

—>

Nested Sequence _| SelectMany Sequence
—
Operator

from ¢ in db.Customers
from p in c.Purchases

. - , select c.Name +
Blogg's Jenkin's Watson's g

Purghases Purphases Pgrchases p.Description;

5/28/2008

10

Element/Quantifiers/Aggregation Operations

Sequence

Query Single element

-

Element Operators
First, Single

Quantifiers
All, Any, Contains

Aggregation Operators

Operator or scalar value

|db.Customer‘s.Fir‘st (c => c.ID == 123);

bool anyInDebt =
db.Customers.Any (c => c.Balance < 0);

Aggregate, Average, Count, Sum, Max, Min

decimal totalBalance =
db.Customers.Sum (c => c.Balance);

Lambda Expressions

from ¢ in db.Customers
where c.Name.Startswith ("a")

select c

db.Customers.Where (c => c.Name.StartsWith ("a"))

5/28/2008

11

Lambda Expressions

Lambda expression

Sequence

i

(or nested sequence)

Query
Operator

Sequence

(or nested sequence)

db.Customers.Where (c => c.Name.StartsWith ("a"))

Subqueries

Sequence Query Sequence
—_—
Operator

Sequence

(or nested sequence)

Query
Operator

P Lambda expression

Sequence

(or nested sequence)

db.Customers.Where (c => c.Purchases.Any (p => p.Price > 1000))

5/28/2008

12

Projecting Subsequences

Nested Sequence Select Nested Sequence
Operator

>

' Blogg's Jenkin's ~ Watson's
Blogg's Jenkin's Watson's High-Value High-Value High-Value
Purchases Purchases Purchases Purchases Purchases Purchases

v

0 oo/ oo/ 07'% oo/ OO/
@ Customers Q O Select Q

Subqueries - Select

Nested Sequence > Select Nested Sequence
Operator

>

from c in db.Customers
select new
{
c.Name,
HighValuePurchases =
from p in ur'chases
where p.Price > 1000
orderby p.Date
select new { p.Description, p.Price }

5/28/2008

13

Purchases

Select

N
Customers

@ OXQ Select O

from ¢ in db.Customers

select new

{

c.Name,

Purchases =

from p in .Pur‘chases
where p.Price > 1000|8&& p.CustomerID == c.ID

orderby p.Date

select new { p.Description, p.Price }

Sample Queries

Preloaded in LINQPad:

www.lingpad.net

5/28/2008

14

Collateral Damage

Losses in translation

— certain kinds of SQL query hard to achieve
e workaround = table-value functions

— locking and optimization hints impossible

C# expressions with no SQL translation

Limits in expression composability

— workaround: www.albahari.com/nutshell/extras.html
Mistaking local for interpreted queries

Leaks in abstraction
— local & LINQ to SQL queries may need to be formulated differently for
maximum efficiency
Performance cost
— Conversion time
¢ workaround = compiled queries & metamodel sharing
— Non-optimal SQL
e workaround = use SQL or SPs for those cases
Updates that don’t involve retrieving data first

Verdict

LINQ to SQL has more than halved the middle tier
development time, in my own experience

A LINQ to SQL middle tier is smaller, tidier and safer
Mix and match where necessary: sometimes old-
fashioned SQL is best

The technology has further promise

— Provider independence

— LINQto Entities

— Third party Object Relational Mappers

5/28/2008

15

Resources

MS LINQ Forum:
http://tinyurl.com/4y93ta

PredicateBuilder & LINQKIit:
www.albahari.com/nutshell/extras.html

LINQPad:
www.lingpad.net

C# 3.0

O'REILLY"

Ci#3.0
Pocket Reference

* C# 3.0 Language

* LINQ: distilled summary

Ci#t 3.0 in a Nutshell

* C# 3.0 Language
*CLR

¢ Core .NET Framework

* LINQ to Objects
¢ LINQ to SQL
¢ LINQ to XML

LINQ

Pocket Reference

e Learn LINQ

in 170 pages
* LINQ to Objects

* LINQ to SQL
* LINQ to XML

Joseph Albahari www.albahari.com

OREILLY"

5/28/2008

16

