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"The art of heavy lifting =

Patterns

Each pattern describes a problem which occurs over and over again in our
environment, and then describes the core of the solution to that problem, in such
a way that you can use this solution a million times over, without ever doing it the

same way twice

Christopher Alexander

» Chunk of advice

» Rooted in practice

» Common Knowledge
- Helps new people learn
- Helps old people teach
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Enterprise Software
Patterns

Fowler - Patterns of Enterprise Application
Architecture - martinfowler.com/eaaCatalog

Hohpe and Woolf - Enterprise Integration
Patterns - enterpriselntegrationPatterns.com

Hohmann - Beyond Software Architecture -
lukehohmann.com

Evans - Domain Driven Development -
domainLanguage.com

Alur, Crupi, and Malks - Core J2EE Patterns
Microsoft - Patterns and Practices
Marinescu - EJB Patterns
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Enterprise Application

Business Application

- Payroll, health care records, billing, credit
scoring, logistics tracking

Large amounts of complex data

- Gigabyte databases with hundreds of tables
Multiple users

User Interfaces for many roles

Business logic can be complex and
irrational

Many systems to integrate with
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3 Points on the Plane

» B2C Retailer
- Catalog with shopping cart

- Browser UI, many concurrent users, with simple
transactions

Back-end Leasing
- Billing, asset management, accounting

- Very complex business rules, tens of users,
controlled clients

Departmental Expense Tracker
- Few users, simple rules

- Must be done very quickly

- May grow into....

¥

¥
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Layered Architecture

v Each layer is a coherent whole

v Substitute Layers

v Multiple Higher layers on a lower one
@=mSome things aren’t well encapsulated
&= May harm performance
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Three Primary Layers

» Presentation

- Interacts with the “user” of the application
- eg: rich client, HTML browser, web service

» Domain

- Business rules, validations, calculations

» Data Source

- Connects to the rest of the enterprise

environment

- Persistence: RDBMs
- Messaging, TP monitors, legacy apps....
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Where to run the layers

Presentation

Domain

Infrastructure

» Depends on type of
system

» Minimize Process
Boundaries

- Often you don't get the
option

» Running all on server is
easiest

@Disconnected operation,
responsiveness
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Organizing Domain Logic

» Transaction Script
» Domain Model
» (Table Module)
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Transaction Script

Recognition Service

recognizedRevenue (contractNumber: long, asOf: Date) : Money
calculateRevenueRecognitions (contractNumber long) : void
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Domain Model

Contract

recognizedRevenue (date)
calculateRecognitions

*

1

Product

calculateRecognitions (contract)

1
Recognition Complete
Recognition
Strateay Strategy
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Domain Model: Sequence

-
a Contract a Product aRecognition
Strategy
T T T
- I I I
calculateRecognitions | |
I

I
calculateRecognitions (a Contract)

calculateRecognitions (a Contract)
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Transaction Script:
sequence

N
Wﬁ : aData Gateway

" T
calculateRecognitions (contractID)

|
findContract (contract ID)
i acontract result
set
get data T

I
[
I
* insert revenue recognition
‘ I
/I_J ‘
T I
| |
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Transaction Script:
Consequences

v Simple (Procedural) Programming Model
v Simple Relationship to database

= Becomes difficult to work with as domain
complexity increases

Duplication between scripts
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Domain Model.
Consequences

v Can deal with very complex domain logic
&= Paradigm Shift
& Can have complex mapping to database
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Final Thoughts

» Patterns are a mechanism for passing on
lessons from different technologies

» The three basic layers are the foundation
to an enterprise application architecture

» No pattern is always correct
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