Patterns in Enterprise
Software

Martin Fowler

ThoughtWorks
martinfowler.com

ThoughtWorks

"The art of heavy lifting =

Patterns

Each pattern describes a problem which occurs over and over again in our
environment, and then describes the core of the solution to that problem, in such
a way that you can use this solution a million times over, without ever doing it the

same way twice

Christopher Alexander

» Chunk of advice

» Rooted in practice

» Common Knowledge
- Helps new people learn
- Helps old people teach

2 ThoughtWorks

"The art of heavy lifting =

»

»

»

»

»

»

»

Enterprise Software
Patterns

Fowler - Patterns of Enterprise Application
Architecture - martinfowler.com/eaaCatalog

Hohpe and Woolf - Enterprise Integration
Patterns - enterpriselntegrationPatterns.com

Hohmann - Beyond Software Architecture -
lukehohmann.com

Evans - Domain Driven Development -
domainLanguage.com

Alur, Crupi, and Malks - Core J2EE Patterns
Microsoft - Patterns and Practices
Marinescu - EJB Patterns

ThoughtWorks

"The art of heavy lifting =

»

»

»
»
»

»

Enterprise Application

Business Application

- Payroll, health care records, billing, credit
scoring, logistics tracking

Large amounts of complex data

- Gigabyte databases with hundreds of tables
Multiple users

User Interfaces for many roles

Business logic can be complex and
irrational

Many systems to integrate with

ThoughtWorks

"The art of heavy lifting =

3 Points on the Plane

» B2C Retailer
- Catalog with shopping cart

- Browser UI, many concurrent users, with simple
transactions

Back-end Leasing
- Billing, asset management, accounting

- Very complex business rules, tens of users,
controlled clients

Departmental Expense Tracker
- Few users, simple rules

- Must be done very quickly

- May grow into....

¥

¥

5 ThoughtWorks

"The art of heavy lifting =

Layered Architecture

v Each layer is a coherent whole

v Substitute Layers

v Multiple Higher layers on a lower one
@=mSome things aren’t well encapsulated
&= May harm performance

6 ThoughtWorks

"The art of heavy lifting

Three Primary Layers

» Presentation

- Interacts with the “user” of the application
- eg: rich client, HTML browser, web service

» Domain

- Business rules, validations, calculations

» Data Source

- Connects to the rest of the enterprise

environment

- Persistence: RDBMs
- Messaging, TP monitors, legacy apps....

Thought\Works

Where to run the layers

Presentation

Domain

Infrastructure

» Depends on type of
system

» Minimize Process
Boundaries

- Often you don't get the
option

» Running all on server is
easiest

@Disconnected operation,
responsiveness

ThoughtWorks

Organizing Domain Logic

» Transaction Script
» Domain Model
» (Table Module)

° Thought\Works

Transaction Script

Recognition Service

recognizedRevenue (contractNumber: long, asOf: Date) : Money
calculateRevenueRecognitions (contractNumber long) : void

10 ThoughtWorks

Domain Model

Contract

recognizedRevenue (date)
calculateRecognitions

*

1

Product

calculateRecognitions (contract)

1
Recognition Complete
Recognition
Strateay Strategy

11 ThoughtWorks

"The art of heavy lifting =

Domain Model: Sequence

-
a Contract a Product aRecognition
Strategy
T T T
- I I I
calculateRecognitions | |
I

I
calculateRecognitions (a Contract)

calculateRecognitions (a Contract)

12 ThoughtWorks

"The art of heavy lifting =

Transaction Script:
sequence

N
Wﬁ : aData Gateway

" T
calculateRecognitions (contractID)

|
findContract (contract ID)
i acontract result
set
get data T

I
[
I
* insert revenue recognition
‘ I
/I_J ‘
T I
| |

2 ThoughtWorks

Transaction Script:
Consequences

v Simple (Procedural) Programming Model
v Simple Relationship to database

= Becomes difficult to work with as domain
complexity increases

Duplication between scripts

H ThoughtWorks

Domain Model.
Consequences

v Can deal with very complex domain logic
&= Paradigm Shift
& Can have complex mapping to database

o ThoughtWorks

Final Thoughts

» Patterns are a mechanism for passing on
lessons from different technologies

» The three basic layers are the foundation
to an enterprise application architecture

» No pattern is always correct

e ThoughtWorks

