
Patterns in Enterprise 
Software

Martin Fowler

ThoughtWorks

martinfowler.com

2

Patterns

» Chunk of advice

» Rooted in practice

» Common Knowledge

– Helps new people learn

– Helps old people teach

Each pattern describes a problem which occurs over and over again in our 
environment, and then describes the core of the solution to that problem, in such 
a way that you can use this solution a million times over, without ever doing it the 

same way twice 

Christopher Alexander



3

Enterprise Software 
Patterns

» Fowler – Patterns of Enterprise Application 
Architecture – martinfowler.com/eaaCatalog

» Hohpe and Woolf – Enterprise Integration 
Patterns – enterpriseIntegrationPatterns.com

» Hohmann – Beyond Software Architecture -
lukehohmann.com

» Evans – Domain Driven Development –
domainLanguage.com

» Alur, Crupi, and Malks – Core J2EE Patterns

» Microsoft - Patterns and Practices

» Marinescu – EJB Patterns

4

Enterprise Application

» Business Application 

– Payroll, health care records, billing, credit 
scoring, logistics tracking

» Large amounts of complex data

– Gigabyte databases with hundreds of tables

» Multiple users

» User Interfaces for many roles

» Business logic can be complex and 
irrational

» Many systems to integrate with



5

3 Points on the Plane

» B2C Retailer

– Catalog with shopping cart

– Browser UI, many concurrent users, with simple 
transactions

» Back-end Leasing

– Billing, asset management, accounting

– Very complex business rules, tens of users, 
controlled clients

» Departmental Expense Tracker

– Few users, simple rules

– Must be done very quickly

– May grow into….

6

Layered Architecture

� Each layer is a coherent whole

� Substitute Layers

� Multiple Higher layers on a lower one

�Some things aren’t well encapsulated

�May harm performance



7

Three Primary Layers

» Presentation

– Interacts with the “user” of the application

– eg: rich client, HTML browser, web service

» Domain

– Business rules, validations, calculations

» Data Source

– Connects to the rest of the enterprise 
environment

– Persistence: RDBMs

– Messaging, TP monitors, legacy apps….

8

Where to run the layers

» Depends on type of 
system

» Minimize Process 
Boundaries

– Often you don’t get the 
option

» Running all on server is 
easiest

�Disconnected operation, 
responsiveness

Presentation

Domain

Infrastructure



9

Organizing Domain Logic

» Transaction Script

» Domain Model

» (Table Module)

10

Transaction Script

recognizedRevenue (contractNumber: long, asOf: Date) : Money
calculateRevenueRecognitions (contractNumber long) : void

Recognition Service



11

Domain Model

recognizedRevenue (date)
calculateRecognitions

Contract

calculateRecognitions (contract)

Product

Recognition
Strategy

Complete
Recognition

Strategy

1

1

*

12

Domain Model: Sequence

a Contract

calculateRecognitions

a Product

calculateRecognitions (a Contract)

a Recognition
Strategy

calculateRecognitions (a Contract)

a Revenue
Recognitionnew



13

Transaction Script: 
sequence

a Recognition
Service

calculateRecognitions (contractID)

a Data Gateway

a contract result
set

findContract (contract ID)

get data

* insert revenue recognition

14

Transaction Script: 
Consequences

� Simple (Procedural) Programming Model

� Simple Relationship to database

�Becomes difficult to work with as domain 
complexity increases

�Duplication between scripts



15

Domain Model: 
Consequences

� Can deal with very complex domain logic

�Paradigm Shift

�Can have complex mapping to database

16

Final Thoughts

» Patterns are a mechanism for passing on 
lessons from different technologies

» The three basic layers are the foundation 
to an enterprise application architecture

» No pattern is always correct


