
API Design as if
Unit Testing Mattered

Michael Feathers
Object Mentor, Inc

Miami, FL
mfeathers@objectmentor.com

• Problem: How do you
gain control over
code?

• Easy in pure code
 System

 Environment

• What if the test
points aren’t
accessible?

 System

 Environment

Unit Testing meets API Design

• API Designers are among the most
talented of developers.

• Why is it so hard to unit test code
that uses contemporary APIs?

Unit Testing meets API Design

• API Design
– the art of creating interfaces that are useful to clients and

extensible for future needs.
– Not all code is API code

• Unit testing
– testing a (small) portion of software independently of

everything else.

Unit Test Rules
A test is not a unit test if:
2. It talks to the database
3. It communicates across the network
4. It touches the file system
5. It can't run correctly at the same time as any of your other unit

tests
6. You have to do special things to your environment (such as

editing config files) to run it.

Tests that do these things aren't bad. Often they are worth
writing, and they can be written in a unit test harness. However,
it is important to be able to separate them from true unit tests so
that we can keep a set of tests that we can run fast whenever
we make our changes.

 Agenda
– API Problems
– Dilemmas of API Development
– Tips and Tricks
– Language Design to the Rescue?
– What Are We Protecting, Really?

 Let's look through some code..

API Anti-pattern:
Private Implementer

API Problems

GraphFinder << interface >>

+ find() : Graph

Source

+ getGraphFinder() : GraphFi nder

<<returns>>

GraphFinderImpl

+ find() : Graph

<<creates>>

API Problems

API Anti-pattern:
Partially Implemented Superclass

Panel

+ enable()
+ getVisibleRect()
...

YourPanel

+ userFunction1()
+ userFunction2()
...

API Problems

protected void Save_Clicked(object sender, EventArgs e)
{
 DataTable table = new DataTable();
 table.Columns.Add(
 new DataColumn("Name", typeof(string)));
 table.Columns.Add(
 new DataColumn("Comments", typeof(string)));

 DataRow row = table.NewRow();
 row["Name"] = name.Text;
 row["Comments"] = comments.Text;
 table.Rows.Add(row);

 book.DataSource = table;
 book.DataBind();
}

API Problems

API Anti-pattern: Object Chain

Banking

+ getAccountList() : List

Account

+ getOwner() : Owner

Owner

+ getRegistration() : Registration

<<returns>>

<<returns>>

API Anti-pattern: Static Factory Method

API Problems

Socket

+ makeServerSocket() : Socket
+ getInput() : Stream
+ bind(address) : void
+ getPort() : int
...

API Anti-pattern: Irreplaceable and Untestable
Behavior

API Problems

void process(EventList& events) {
 for(EventList::iterator it = events.begin(); it != events.end(); ++it) {
 Event *event = *it;
 if (event->desc_tag == RD_TY) {
 ::stepper_write(event->range.next);
 }
 else {
 motion_control_am.sendCommand(event->range.current_action);
 }
 }
}

 API Development is tough work:
– APIs live forever

• Mistakes live forever
• Early choices can make later choices impossible

– Users can misuse APIs (and blame you)
– Security
– API development has a high profile

API Dilemmas

API Dilemmas

ExtensibilityMisuse PreventionSecurity

 Know your API. Different APIs have different
requirements.

 Avoid Static Methods
– Usually problematic but useful in two cases:

1. When an operation is completely replaceable by other
means

2. When an operation will never need to be replaced

Tips and Tricks

 Static methods work better if
you pull back one extra
level of indirection..

 Singleton becomes Registry
[Fowler]

Tips and Tricks

Settings

+ getInstance() : Settings
+ getFlowRate() : double
...

Statics move back to the
registry

Registry

- settings : SettingsProvider

+ getSettings() : SettingsProvider
+ setSettingsForT est(:SettingsProvider) : void

SettingsProvider

+ getFlowRate() : double
...

Tips and Tricks

public class Registry {
 private static SettingsProvider settingsProvider

= new ProductionSettingsProvider();

 public static SettingsProvider getSettings() {
 return settingsProvider;
 }

 public static void setSettingsForTest(SettingsProvider provider) {
 settingsProvider = provider;
 }
}

Tips and Tricks

Monostate Factory

SocketFactory

- serverSocketMaker : ServerSocketMaker
- socketMaker : SocketMaker

+ makeServerSocket() : ServerSocket
+ makeSocket() : Socket
+ setServerSocketMakerForTest(:ServerMaker) : void
+ setSocketMakerForTest(:SocketMaker) : void
...

<<interface>>
ServerSocketMaker

+ make() : ServerSocket

<<interface>>
SocketMaker

+ make() : Socket

Tips and Tricks

 The ‘Envelope of Use is the Envelope of
Encapsulation’
– Look at the typical usage scenarios for your API.
– Recognize that if you can’t/won’t supply mocks, people

will wrap and they will wrap at the ‘envelope’ boundary

Tips and Tricks

Handling Mail

Tips and Tricks

MailReciever

+ MailReceiver(:MessageProcessor, : HostInformation)
+ getMessageCount();
+ checkForMail();
- processMessages(:Message [])
- isDeleted(:Message)
- getMessages(:Folder)
- getSession() : Session
- getStore() : Store
- getFolder() : Folder
isMessageToRoute(:Message)

An alternative Mail API

Tips and Tricks

<<interface>>
MessageSource

+ registerFolderFilter(:FolderFilter)
+ registerMessageFilter(:MessageFilter)
+ registerMessageSink(:MessageSink) <<interface>>

FolderFilter

+ accept(:Folder) : boolean

<<interface>>
MessageFilter

+ accept(:Message) : boolean

<<interface>>
MessageSink

+ acceptMessage(:Message) : void

 Supply Interfaces
– Interfaces in the broad sense – yes, abstract bases

can be interfaces
– The concept of an interface is different in C++, C#,

Java, and dynamic languages

Tips and Tricks

Leave your users an “out”
– If users can’t mock your API, they’ll wrap it.
– This could be a valid API choice, but publish it,

and avoid object chains.

Tips and Tricks

Avoid making classes and methods sealed or
final or non-virtual.
– unless you’re sure you’ve provided all of the

access users will need

Tips and Tricks

Wouldn't all of this be solved if API designers
just wrote tests for their APIs?

Sadly, no.

Tips and Tricks

 The Golden Rule of API Design:
“It's not enough to write tests for an API you develop, you
have to write unit tests for code that uses your API.

When you do, you learn first-hand the hurdles that your
users will have to overcome when they try to test their code
independently.”

Tips and Tricks

 Supply your tests and mocks to your users
– Good APIs are tested. If you were testing, chances

are you wrote or used mocks. Supply them to your
users.

– Supply your tests to your users also. Why not?

Tips and Tricks

 If you have construction, you have everything
– you can mock!

Language Rescue

at acme.invoicingapp.tools.NewShipment.ship(NewShipment.java(121)
 at acme.invoicingapp.utilities.Bundler.newBundle(Bundler.java(5780)
 at acme.services.dispatchers.GroundDispatcher.dispatch(GroundDispatcher.java(56)
 {
 …
 return new RoutingDisplatcher(bundle, packet, Ship.GROUND);
 …
 }

Language Rescue

 Various languages have tools for deep mocking:
– Java – AspectJ, byte-code manipulation libraries, etc
– .NET- similar
– C++ - (nothing)

 As an API developer remember:
– Unit testing is too important to depend upon deep voodoo!
– The Gulf of Practice

 You encounter code like this in the middle of an
application. Your job is to get the code under control.
 What do you do?

Protection?

…
System.exit(1);
…

 Options
– Test with a security manager (iffy)
– Wrap the call and throw an exception

 Why doesn’t Java supply this?

Protection?

System

+ setExit(: ExitOperation)
+ exit(:int)
...

 Madness!
– Think of security!
– Safety!
– Malicious attacks!

Protection?

System

+ setExit(: ExitOperation)
+ exit(:int)
...

 In Ruby..
– Why is this different?

Protection?

class Something
 def do_it
 exit(1)
 end
end

class Something
 def exit(value)
 end
end

tests ..

 Why are you able to
open your electronics?

 Your car engine?

Protection?

 The Politics of API Design
– Who is responsible when an interface changes?

Protection?

 The Politics of API Design
– Can you really address security with final, sealed

and non-virtual functions?

Protection?

 The Delicious Irony of API Development
– You can sweat and toil over the design of your API

but if you don't deal with testability, your best
users will just wrap your API.

Resources

• Effective Java – Joshua Bloch
• Framework Design Guidelines – Cwalina, Abrams
• Test Driven Development By Example – Kent Beck
• Working Effectively with Legacy Code – Michael Feathers
• The Eclipse API Rules of Engagement

http://help.eclipse.org/help32/index.jsp?topic=/org.eclipse.platform.doc.isv/referenc
e/misc/api-usage-rules.html

