
JAOO, Brisbane & Sydney, 2008

Componentisation in the
Web Presentation Layer

Philip Lopez
Suncorp

Overview

➲ Some problems facing ‘large’ organisations
● A viewpoint on the Suncorp experience
● Can web ‘component’ approaches help?

➲ A few code examples
● SpringMVC 2.5.x
● Tapestry 5 (beta)
● Wicket 1.3.x

➲ Web components, SOA, and usability
➲ Future directions?

Many large organisations have a diverse
(web) application portfolio

➲ Business product or process centric
● Not user-centric - switch between many apps

● long training periods, frustration – labour market
➲ Expensive to maintain

● Each system has minimal feature set
➲ Significant functional overlap

● Different channels have similar needs

“It’s better to
build one thing

many times than
many things

once”

‘Typical’ application portfolio

Web App 1

Enterprise
System 1

Payments

G/L

Bus. rules

Doc gen.

Enterprise
System 2

Customers

Bus. rules

Doc. gen.

Payments

Web App 2

Doc. gen.

Call Centre
“Cathy”

Sales Partner
“Patrick”

Probably not a “win”
for anyone

This is, of course, an
oversimplification

Obvious need for reuse, and yet...

➲ Reuse is still not commonplace
➲ Building for reuse takes more time/effort
➲ Product management approach required
➲ But some great examples:

● Open source libraries
● The RESTful web, mash ups, etc.
● Maven 2

● An example of the masochism we’re willing to
endure! :-)

Only a few approaches to consider...

Source: Wikipedia, accessed 27 May, 2008

What do ‘web components’ offer?

➲ Reuse across applications / channels
● Still reuse at other layers (e.g., SOA)

➲ Rapid development / assembly
● But using high quality pre-built components

➲ Consistent user interfaces
● ‘Standards’... codified, no longer shelfware

➲ Smaller units to understand, develop & test
➲ Higher levels of abstraction

● Improved error detection
● Improved code durability??

Example of error reporting

Error occurs on
‘calling’ page

A quick review of HTTP

➲ GET – “idempotent” request
● Ideal for “render” current resource/app state
● URLs appropriate for bookmarks (context-rich)

➲ POST – not idempotent
● Ideal for “actions” as they intend to change state

Render requests – the HTML ‘page space’

➲ Render requests output a HTML tree
● ‘Stream-oriented’ approaches: “single-pass”
● DOM-oriented – random access

➲ “Contributing” to the DHTML page space
● ‘extension points’ such as HEAD, end of BODY

➲ Namespace uniqueness concerns
➲ Sub-spaces (distinct namespaces)

● CSS
● JavaScript

➲ DOM can be modified at runtime
● Basis for DHTML/AJAX

Action requests – where is this code?

➲ MVC approaches are ‘action’ oriented
● Code is found in ‘action’ controllers
● Separate from the ‘page’ model/view

➲ Component approaches provide a
‘presentation model’

● The ‘event listener’ code for an action is found in
the component (page) class that was
responsible for rendering the action URL

● e.g., action link, form ‘action’
➲ Action typically returns a ‘render’ response

● POST+Redirect+GET a good strategy

Anatomy of an componentised application

SpringMVC app
in process of

being ported to
Tapestry 5

(rough)

Anatomy of an componentised application

“Content”
section

(currently a
single form)

“Dashboard”
style panelsTitled

sub-form
section

Titled
sub-form
section

Row within
sub-form

Action on row
within sub-

form

Anatomy of an componentised application

The whole
‘page layout’

is also a
component

Some examples of componentisation

➲ Porting the previous app from SpringMVC
➲ Web ‘standards’... as components
➲ More sophisticated reusable UI components

The SpringMVC version, as developed

150 lines of JSP code
like this, not including

dashboard 'tiles'

~470 lines of Java code
in the controller [developed externally]

Sure, it could be
improved, but the
technology didn’t

encourage
modularisation.

Porting to Tapestry 5 (trial, in progress)

<t:layout.PageLayout xmlns:t="...">
 <t:parameter name="content">
 <t:customer.CustomersAndLoansPanel/>
 </t:parameter>
</t:layout.PageLayout>

<t:container xmlns:t="...">
 <h3>Customers & Loans</h3>

 <t:form t:id="customersAndLoansForm">
 <t:errors />
 <h4>My Customers</h4>
 <t:customer.QuickAssistCustomersPanel />

 <h4>Loan Information</h4>
 <t:customer.AddLoansPanel />

 <t:submit
 t:id="continue"
 value="Continue"
 class="greenPositive"
 onmouseover="this.className='greenPositive greenHover'"
 onmouseout="this.className='greenPositive'" />
 </t:form>
</t:container>

<t:container xmlns:t="http://tapestry.apache.org/schema/tapestry_5_0_0.xsd">
 <fieldset class="QuickCal">
 <div>
 <table class="QuickCal">
 <colgroup>
 <col id="QuoteInclude" />
 <col id="Name" />
 <col id="Quotes" />
 <col id="DOB" />
 </colgroup>
 <thead>
 <tr>
 <th scope="col">Include in Quote</th>
 <th scope="col">Name</th>
 <th scope="col">Quotes/Applications</th>
 <th scope="col">Date of Birth</th>
 </tr>
 </thead>
 <tbody>
 <t:if test="customersAvailable">
 <tr
 t:type="loop"
 source="customers"
 encoder="customerRowIdEncoder"
 value="customer">
 <t:customer.QuickAssistCustomerRow customer="customer" />
 </tr>
 <t:parameter name="else">
 <tr>
 <td colspan="4">
 No Customer Listed. Please import "My Customers" Listing from
 QuickAssist.
 </td>
 </tr>
 </t:parameter>
 </t:if>
 </tbody>
 <tfoot>
 <tr>
 <td colspan="4">
 <t:common.SubmitLink
 t:id="refreshCustomerListLink"
 buttonClass="Refresh"
 label="Refresh Quick Assist Customer List" />
 </td>
 </tr>
 </tfoot>
 </table>
 </div>
 </fieldset>
</t:container>

Less than 50
lines in this file

~40 lines in
the page class

(albeit not quite
feature complete)

Porting to Tapestry 5 (trial, in progress)

T5 loop
component,
with robust
support for

forms.

An page-specific
panel, with a

type-safe
parameter.

Reusable
‘widget’ -

encapsulate
implementation.

Deleting a row... (one) SpringMVC style

➲ Set operation and row number as hidden
fields for operation in form (using JS) and
submit form.

➲ In the controller’s onSubmit:
if ("deleteLoan".equals(operation)) {
 backing.getLoans().remove(Integer.parseInt(request.getParameter("rownumber")));
}
return new ModelAndView(new RedirectView(getSuccessView()));

Deleting a row... (one) Wicket style

private SubmitLink buildDeleteLoanRecordSubmitLink(final LoanDetail loan)
{
 return new SubmitLink("deleteLoanRecord") {
 public void onSubmit()
 {
 loans.remove(loan);
 }
 };
}

private ListView createLoanListView()
{
 return new ListView("loansList", new PropertyModel(this, "loans")) {
 protected void populateItem(final ListItem item)
 {
 final LoanDetail loan = (LoanDetail) item.getModelObject();
 // ...
 // item.add(makeTextField(loan, "amount"));
 item.add(buildDeleteLoanRecordSubmitLink(loan));
 }
 };
}

➲ Listener is ‘embedded’ in component tree
that was rendered

● Uses session and Serializable LoanDetail

Deleting a row... (one) Tapestry 5 style

@Component(parameters = { "context=loanDetail.rowId", "event=deleteLoanRecord" })
private EventLink deleteLoanRecord;

void onDeleteLoanRecord(String rowId)
{
 loanDetails.remove(indexOfLoan(UUID.fromString(rowId)));
}

<t:if test="showDelete">
 <a t:id="deleteLoanRecord" class="DeleteRecord" />
 <t:parameter name="else">

 </t:parameter>
</t:if>

Using a UUID is a robust
(custom) row identification
approach... but ugly, and

could be extracted out.

➲ Add an action link with a context
● Encode ‘primary key’ to client (HTML)

Codifying web development standards

➲ Struggle to maintain corporate web L&F
standards – many violations of DRY

● CSS requires boilerplate HTML markup

<div>
 <p>

 <form:errors path="creditCard.cardNumber" />

 </p>
 <label for="StartUp" class="question">
 <spring:message code="label.cardNumber" />
 *
 </label>
 <form:input id="cardNumber" path="maskedCreditCardNumber"
 size="16" maxlength="16" onfocus="this.select();" />
</div>

Copy and
paste errors!

About the only
interesting

thing!

So you end up with...

Simple components offer a solution
<t:container xmlns:t="http://tapestry.apache.org/schema/tapestry_5_0_0.xsd">
 <t:scform.QuestionTemplate for="cardType">
 <t:radioGroup t:id="cardType">
 <t:loop t:id="cardTypeLoop">
 <t:radio t:id="currentCardTypeRadio" />
 <t:label for="currentCardTypeRadio" />
 </t:loop>
 </t:radioGroup>
 </t:scform.QuestionTemplate>
 <t:scform.QuestionTemplate for="cardNumber">
 <input t:id="cardNumber" />
 </t:scform.QuestionTemplate>
 <t:scform.MultiFieldQuestionTemplate t:id="cardExpirationDate" required="true">
 <input t:id="expirationMonth" size="2" />
 /
 <input t:id="expirationYear" size="2" />
 </t:scform.MultiFieldQuestionTemplate>
 <t:scform.QuestionTemplate for="cardSecurityCode">
 <input t:id="cardSecurityCode" />
 </t:scform.QuestionTemplate>
 <t:scform.QuestionTemplate for="cardholderName">
 <input t:id="cardholderName" />
 </t:scform.QuestionTemplate>
</t:container>

QuestionTemplate is
a reusable component
that encapsulates our

(versioned) web
development
standards.

scform is the virtual
package (namespace)

for the Suncorp
common form

component library.
Just drop-in the JAR.

Repetition here due to
Tapestry restrictions

(component encapsulation)

The QuestionTemplate component

<t:container xmlns:t="http://tapestry.apache.org/schema/tapestry_5_0_0.xsd">
 <div class="scform-Question">
 <t:label t:id="label" class="scform-QuestionPrompt"
 for="prop:field" />
 <t:body />
 <t:if test="required">
 *
 </t:if>
 </div>
</t:container>

@IncludeStylesheet("FormStyles.css")
public class QuestionTemplate
{
 @Parameter(name = "for", required = true, defaultPrefix = "component")
 private Field field;

 public Field getField()
 {
 return field;
 }

 public boolean isRequired()
 {
 return field.isRequired();
 }
}

This annotation
contributes

FormStyles.css to the
document’s HEAD

(uniquely)

All the rest is boilerplate.
The component expects
a Field in its body, and

renders it out here.
D.R.Y. – HTML markup
is based on declarative

validation on field.

A “Receive Payment” widget

➲ A few options for reuse – not in conflict
● (existing) Credit card validation library (JAR, d.i.)
● (existing) Payment service [SOA]
● Perhaps a shared payment “web application”

● But now requires application integration - fragile
● Breaks user experience (e.g., multi-branding)

➲ Developing a robust page takes time
● Lots of validations
● Some dynamic behaviour
● Reuse across many apps can save $$$

➲ DRY – use metadata from services
● e.g. available credit card types

<html xmlns:t="http://tapestry.apache.org/schema/tapestry_5_0_0.xsd">
 <head>
 <title>Credit Card Form</title>
 </head>
 <body>
 <t:scform.SimpleForm>
 <t:scform.FormSection title="literal:Credit Card Details">
 <div t:id="creditCardPaymentDetails" />
 </t:scform.FormSection>
 <t:submit value="Submit" />
 </t:scform.SimpleForm>
 </body>
</html>

Lots of
variations of

this...

The beginnings of a
shared component –
a credit card details

sub-form.

Architectural directions

➲ Toward true ‘composite’ applications and
multiple layers of reuse

● Shared services (business and utility)
● Shared base widgets
● Shared business-functionality widgets

➲ Organisation role-centric applications
➲ Service-oriented system ‘product’ mgmt
➲ Declarative approaches (higher abstraction)

● Model-driven benefits, but not the code-gen...
● Convention-over-configuration

‘Future’ application portfolio

Broker App

Customers
Domain

Payments Doc gen.
Customer

Info

Bus. rules

UI

Call Centre App

Call Centre
“Cathy”

Sales Partner
“Patrick”

UI

Financials
Domain (G/L)

Bus. rules

Application/orchestration

Challenges to reuse in the web app layer

➲ Multiple languages/technologies
● JavaScript and DHTML is common, so ‘widgets’

can start there (but needs JavaScript)
● Can couple client-side widgets to server-side

resources using server-side frameworks
➲ Does the presentation layers change too

quickly to make reuse warranted?
● Gains are achievable at the enterprise scale...

Take-home messages...

➲ We often violate the “Don’t Repeat Yourself”
principle in web app development

● Boilerplate HTML within an application
● Boilerplate HTML between applications
● Similar functionality between applications

➲ Component-based frameworks help...
● Natural approach to modularisation
● Enables component reuse between applications

➲ There’s a learning curve, and more “magic”,
so choose carefully...

● Clean, correct abstractions
● Long-term productivity most important?

	Slide 1
	Overview
	LargeOrgsHaveProblems
	TypicalApplicationPortfolio
	BarriersToReuse
	Frameworks-a-plenty
	WhyWebComponents
	ErrorReportingExample
	HttpReview
	HttpRenderRequests
	HttpActionRequests
	Anatomy-Initial
	Anatomy-Breakup
	Anatomy-PageLayout
	SomeExamples
	SpringMVC-JSP
	Tapestry-TopTemplates
	Tapestry-CustomersPanel
	DeletingRow-SpringMVC
	DeletingRow-Wicket
	DeletingRow-Tapestry
	WebDevelopmentStandards-JSP
	WebDevStds-LotsOfJsp
	WebDevStds-T5Cleaner
	WebDevStds-QuestionTemplate
	ReceivePaymentWidget
	ReceivePaymentWidget-Migration
	ArchitecturalDirections
	FutureApplicationPortfolio
	ChallengesToReuseInWebLayer
	TakeHomeMessages

