
XP Immersion TM www.objectmentor.com

1Copyright 1999-2000 by Object Mentor, Inc. All Rights Reserved

Clean Code III

Functions

Object Mentor, Inc.

Copyright 2008 by Object Mentor, Inc
All Rights Reserved

objectmentor.com

Robert C. Martin

2

The First Line of Organization

In the early days of programming
we composed our systems of routines and
subroutines.
in Fortran it was programs, subprograms, and
functions.

Nowadays only the function survives.

XP Immersion TM www.objectmentor.com

2Copyright 1999-2000 by Object Mentor, Inc. All Rights Reserved

3

A “Long” function in FitNesse

Not only is it long, but it’s got
duplicated code,
lots of odd strings,
many strange and inobvious data types and
APIs.

See how much sense you can make of it in
the next three minutes…

4

A “Long” function in FitNesse 1
public static String testableHtml(

PageData pageData,

boolean includeSuiteSetup

) throws Exception {

WikiPage wikiPage = pageData.getWikiPage();

StringBuffer buffer = new StringBuffer();

if (pageData.hasAttribute("Test")) {

if (includeSuiteSetup) {

WikiPage suiteSetup =

PageCrawlerImpl.getInheritedPage(

SuiteResponder.SUITE_SETUP_NAME, wikiPage

);

if (suiteSetup != null) {

WikiPagePath pagePath =

XP Immersion TM www.objectmentor.com

3Copyright 1999-2000 by Object Mentor, Inc. All Rights Reserved

5

A “Long” function in FitNesse 2
if (setup != null) {

WikiPagePath setupPath =

wikiPage.getPageCrawler().getFullPath(setup);

String setupPathName = PathParser.render(setupPath);

buffer.append("!include -setup .")

.append(setupPathName)

.append("\n");

}

}

buffer.append(pageData.getContent());

if (pageData.hasAttribute("Test")) {

WikiPage teardown =

PageCrawlerImpl.getInheritedPage("TearDown", wikiPage);

if (teardown != null) {

WikiPagePath tearDownPath =

6

A “Long” function in FitNesse 3

if (suiteTeardown != null) {

WikiPagePath pagePath =

suiteTeardown.getPageCrawler().getFullPath(suiteTeardown);

String pagePathName = PathParser.render(pagePath);

buffer.append("!include -teardown .")

.append(pagePathName)

.append("\n");

}

}

}

pageData.setContent(buffer.toString());

return pageData.getHtml();

}

XP Immersion TM www.objectmentor.com

4Copyright 1999-2000 by Object Mentor, Inc. All Rights Reserved

7

How did you do?

Do you understand the function after three minutes
of study?
Probably not.

There’s too much going on in there,
at too many different levels of abstraction.
There are strange strings
odd function calls
doubly nested if statements controlled by flags.

Ick!

8

Nothing up my sleve…

With just a few simple
method extractions,
some renaming,
and a little restructuring,

I was able to capture the intent of the
function.
See if you can understand the result in the
next 3 minutes?

XP Immersion TM www.objectmentor.com

5Copyright 1999-2000 by Object Mentor, Inc. All Rights Reserved

9

Refactored Function
public static String renderPageWithSetupsAndTeardowns(

PageData pageData, boolean isSuite

) throws Exception {

boolean isTestPage = pageData.hasAttribute("Test");

if (isTestPage) {

WikiPage testPage = pageData.getWikiPage();

StringBuffer newPageContent = new StringBuffer();

includeSetupPages(testPage, newPageContent, isSuite);

newPageContent.append(pageData.getContent());

includeTeardownPages(testPage, newPageContent, isSuite);

pageData.setContent(newPageContent.toString());

10

You probably don’t understand it all.

Still you probably understand that it:
includes setup and teardown pages into a test
page,
renders that page into HTML.

XP Immersion TM www.objectmentor.com

6Copyright 1999-2000 by Object Mentor, Inc. All Rights Reserved

11

What’s more…

You also probably realize:
That this function belongs to some kind of web-based
testing framework.

Divining that information from the refactored
function is pretty easy,

but it’s pretty well obscured by the initial code.

12

So what is the magic?

What is it that makes the refactored function easy to
read and understand?

How can we make a function communicate it’s
intent?

What attributes can we give our functions that will
allow a casual reader to intuit the kind of program
they live inside?

XP Immersion TM www.objectmentor.com

7Copyright 1999-2000 by Object Mentor, Inc. All Rights Reserved

Small!

The First Rule of Functions.

14

The rules of functions:

The first rule:
They should be small.

The second rule:
They should be smaller than that.

XP Immersion TM www.objectmentor.com

8Copyright 1999-2000 by Object Mentor, Inc. All Rights Reserved

15

A Screenful?

In the ‘80s we used to say that a function should be
no bigger than a screenful.

Of course VT100 screens were 24 lines by 80
columns,
and our editors used 4 lines for administrative
purposes.

Nowadays with a cranked down font and a nice big
monitor

you can fit 150 characters on a line, and a 100 lines
or more on a screen. Lines should not be 150
characters long.

16

Smaller Than a Screenful

Functions should not be 100 lines long.
Functions should hardly ever be 20 lines
long.
Indeed, the refactored function was too long.

It should have been:

public static String renderPageWithSetupsAndTeardowns(

PageData pageData, boolean isSuite) throws Exception {

if (isTestPage(pageData))

includeSetupAndTeardownPages(pageData, isSuite);

return pageData.getHtml();

}

XP Immersion TM www.objectmentor.com

9Copyright 1999-2000 by Object Mentor, Inc. All Rights Reserved

17

Blocks

Smallness implies that blocks within:
if statements,
else statements,
while statements,
and etc.,

should be one line long.
Probably that line should be a function call.

Not only does this keep the function small;
but it also adds documentary value

18

Indenting

Smallness also implies:
functions should not be large enough to hold
nested structures.
Therefore the indent level of a function should
not be greater than one or two.

This, of course, makes the functions easier to
read and understand.

XP Immersion TM www.objectmentor.com

10Copyright 1999-2000 by Object Mentor, Inc. All Rights Reserved

Do One Thing

20

Functions should do one thing.

They should do it well.
They should do it only.

XP Immersion TM www.objectmentor.com

11Copyright 1999-2000 by Object Mentor, Inc. All Rights Reserved

21

Doing More Than One Thing

The original code does lots more than one thing.
It’s creating buffers,
fetching pages,
searching for inherited pages,
rendering paths,
appending arcane strings,
and generating HTML,
among other things.

The re-refactored code is doing one simple thing.
including setups and teardowns into test pages.

22

Or is it?

It’s easy to make the case that it’s doing 3
things:

Determine whether the page is a test page.

If so, include setups and teardowns.

Render the page in HTML.

So which is it?
Is the function doing one thing,

XP Immersion TM www.objectmentor.com

12Copyright 1999-2000 by Object Mentor, Inc. All Rights Reserved

23

All At Same Level…

The steps are one level of abstraction below the
name of the function.
A brief TO paragraph:

TO RenderPageWithSetupsAndTeardowns we:
check to see if the page is a test page
and if so we include the setups and teardowns.
In either case we render the page in HTML.

If a function’s steps are one level below the stated
name of the function,

then the function is doing one thing.

24

The reason we write functions is to:

Decompose a larger concept
(i.e. the name of the function)

into a set of steps at the next level of
abstraction.

XP Immersion TM www.objectmentor.com

13Copyright 1999-2000 by Object Mentor, Inc. All Rights Reserved

25

Doing One Thing!

It should be very clear that
The original code contains steps at many different
levels of abstraction.
So it is clearly doing more than one thing.

Even the first refactoring has two levels of
abstraction,

as proved by our ability to shrink it down.
But it would be very hard to meaninfully shrink the
final.

We could extract the if statment into a function named
includeSetupsAndTeardownsIfTestPage,
but that simply restates the code without changing the
level of abstraction.

26

Doing One Thing!

You can tell that a function is doing more
than “one thing”

if you can extract a function from it
with a name that is not merely a restatement
of its implementation.

XP Immersion TM www.objectmentor.com

14Copyright 1999-2000 by Object Mentor, Inc. All Rights Reserved

27

Reading code from top to bottom.

We want the code to read like a top-down narrative.
We want every function to be followed by those at
the next level of abstraction,

We can read the program, descending one level of
abstraction at a time.

We want to read the program as if it were a set of
TO paragraphs,

each of which describes the current level of
abstraction
and references subsequent TO paragraphs at the
next level down.

28

To Paragraphs:

To include the setups and teardowns we
include setups,
then include the test page content,
then include the teardowns.

To include the setups we
include the suite setup if this is a suite,
then include the regular setup.

To include the suite setup we
search the parent hiearchy for the “SuiteSetUp” page
add an !include with the path of that page.

To search the parent...

XP Immersion TM www.objectmentor.com

15Copyright 1999-2000 by Object Mentor, Inc. All Rights Reserved

29

That’s how you do ONE THING.

Use descriptive names.

XP Immersion TM www.objectmentor.com

16Copyright 1999-2000 by Object Mentor, Inc. All Rights Reserved

31

Example

I changed the name of our example function
from testableHtml
To renderPageWithSetupsAndTeardowns.

This is a far better name.

I also gave the private methods a descriptive name
such as isTestable
includeSetupAndTeardownPages.

It is hard to overestimate the value of good names.

32

Remember Ward’s principle:

“You know you are working on clean code
when each routine turns out to be pretty
much what you expected.”
Half the battle to achieving that principle is

choosing good names
for small functions
that do one thing.

XP Immersion TM www.objectmentor.com

17Copyright 1999-2000 by Object Mentor, Inc. All Rights Reserved

33

The Naming Heuristic

The smaller and more focussed a function is,
the easier it is to choose a descriptive name.

Conversely, if you can’t choose a descriptive
name

Your function is probably too big
And does more than ONE THING.

34

Long Names

Don’t be afraid to make a name long.
A long descriptive name is better than

a short enigmatic name.
a long descriptive comment.

Use a naming convention that allows multiple words
to be easily read in the function names

Like Camel Case or Underscores.
IncludeSetUpAndTearDown

Include_setup_and_teardown

Make use of those multiple words to give the
function a name that says what it does.

XP Immersion TM www.objectmentor.com

18Copyright 1999-2000 by Object Mentor, Inc. All Rights Reserved

35

It Takes Time

Don’t be afraid to spend time choosing a name.
Indeed, you should try several different names

and read the code with each in place.

Modern IDEs like Eclipse or IntelliJ make it trivial to
change names.
Use one of those IDEs and experiment with different
names until you find one that is as descriptive as
you can make it.

36

Names and Design

Choosing descriptive names will clarify the
design of the module in your mind,

and help you to improve it.

Hunting for a good name often results in a
favorable restructuring of the code.

XP Immersion TM www.objectmentor.com

19Copyright 1999-2000 by Object Mentor, Inc. All Rights Reserved

37

Consistent Names

Use the same phrases, nouns, and verbs in the
function names you choose for your modules.

Consider, for example, the names
includeSetupAndTeardownPages,
includeSetupPages,
includeSuiteSetupPage,
includeSetupPage.

The similarity of those names allows the sequence to
tell a story.
Indeed, if I showed you just the sequence above,
you’d ask yourself:

“What happened to includeTeardownPages,
includeSuiteTeardownPage, and includeTeardownPage?”
How’s that for being “...pretty much what you expected.”

No more than three arguments.

XP Immersion TM www.objectmentor.com

20Copyright 1999-2000 by Object Mentor, Inc. All Rights Reserved

39

How many arguments?

he ideal number of arguments for a function is zero
(niladic).
Next comes one (monadic),
Followed closely by two (dyadic).
Three arguments (triadic) should be avoided where
possible.
More than three (polyadic) requires very special
justification,

and then shouldn’t be used anyway.

40

Arguments are hard.

They take a lot of conceptual power.
That’s why I got rid of almost all of them from the
example.
Consider, for example, the StringBuffer in the
example.

We could have passed it around as an argument
rather than making it an instance variable;
but then our readers would have had to interpret it
each time they saw it.

XP Immersion TM www.objectmentor.com

21Copyright 1999-2000 by Object Mentor, Inc. All Rights Reserved

41

Arguments are hard.

When you are reading the story told by the module,
includeSetupPage() is easier to understand than
includeSetupPageInto(newPageContent).

The argument is at a different level of abstraction
than the function name,

and forces you to know a detail (i.e. StringBuffer) that
isn’t particularly important at that point.

42

Output arguments

Harder to understand than input arguments.
We are used to the idea of information going
in to the function through arguments

and out through the return value.

We don’t usually expect information to be
going out through the arguments.

So output arguments often cause us to do a
double-take.

XP Immersion TM www.objectmentor.com

22Copyright 1999-2000 by Object Mentor, Inc. All Rights Reserved

43

Common Monadic Forms

There are two common reasons to pass a single
argument into a function.

You may be asking a question about that argument
as in: boolean fileExists(“MyFile”).
Or you may be operating on that argument,

transforming it into something else and returning it.
For example: InputStream fileOpen(“MyFile”) transforms a
String into an InputStream return value.

These two uses are what readers expect when they
see a function.

You should choose names that make the distinction
clear.

44

Flag Arguments

Passing a boolean into a function is a truly
terrible practice.
It immediatly complicates the signature of the
method,

loudly proclaiming that this function does
more than one thing.
It does one thing if the flag is true, and
another if the flag is false!

XP Immersion TM www.objectmentor.com

23Copyright 1999-2000 by Object Mentor, Inc. All Rights Reserved

45

Dyadic Functions

A function with two arguments is harder to
understand than a monadic function.

writeField(name) is easier to understand than
writeField(outputStream, name).

the first glides past the eye. easily depositing its
meaning.
The second requires a short pause until we learn
to ignore the first parameter.

We should never ignore any part of the code.
The parts we ignore are where the bugs will hide.

46

Triads

Functions that take three arguments are significantly
harder to understand than dyads.

The issues of ordering, pausing, and ignoring are
more than doubled.

Consider the common overload of assertEquals that
takes three arguments:

assertEquals(message, expected, actual).
How many times have you read the message and
thought it was the expected?
I have stumbled and paused over that particular triad
many times.
In fact, every time I see it I do a double-take and then
learn to ignore the message.

XP Immersion TM www.objectmentor.com

24Copyright 1999-2000 by Object Mentor, Inc. All Rights Reserved

No side-effects.

48

Side-effects are lies.

Your function promises to do one thing,
but it also does other, hidden, things.

to the variables of it’s own class.
to the parameters passed into the function,
to system globals.

They are devious and damaging mistruths
that result in

strange temporal couplings
and order dependencies.

XP Immersion TM www.objectmentor.com

25Copyright 1999-2000 by Object Mentor, Inc. All Rights Reserved

49

Side Effects

Consider the seemingly innocuous function
that uses a standard algorithm to match a
userName to a password. It returns true if they
match, and false if anything goes wrong.
But it also has a side-effect.

Can you spot it?

50

Side Effects

public class UserValidator {

private Cryptographer cryptographer;

public boolean checkPassword(String userName, String password) {

User user = UserGateway.findByName(userName);

if (user != User.NULL) {

String codedPhrase = user.getPhraseEncodedByPassword();

String phrase = cryptographer.decrypt(codedPhrase, password);

if ("Valid Password".equals(phrase)) {

XP Immersion TM www.objectmentor.com

26Copyright 1999-2000 by Object Mentor, Inc. All Rights Reserved

51

Side Effects

The side-effect is
the call to Session.initialize(),

of course.

The checkPassword function, by its name, says that
it checks the password.

The name does not imply that it initializes the
session.
So a caller who believes what the name of the
function says, runs the risk of erasing the existing
session data when they decide to check the validity of
the user.

52

Temporal Couplings

The side-effect creates a temporal coupling.
checkPassword can only be called at certain times

(i.e. when it is safe to initialize the session).

If it is called out of order,
session data may be inadvertently lost.

Temporal couplings are confusing,
especially when hidden as a side effect.

If you must have a temporal coupling,
you should make it clear in the name of the function.
In this case we might rename the function
checkPasswordAndInitializeSession,

though that certainly violates “Do One Thing”.

XP Immersion TM www.objectmentor.com

27Copyright 1999-2000 by Object Mentor, Inc. All Rights Reserved

Command Query Separation

54

Asking vs. Telling

Functions should either
do something,
or answer something,
but not both.

Either your function should
change the state of an object,
or it should return some information about
that object.

Doing both often leads to confusion.

XP Immersion TM www.objectmentor.com

28Copyright 1999-2000 by Object Mentor, Inc. All Rights Reserved

55

Example

Consider, for example, the following function:

public boolean set(String attribute, String value);

It sets the value of a named attribute
returns true if it is successful
false if no such attribute exists.

56

Example

This leads to odd statements like this:

if (set("username", "unclebob"))...

What does that mean?
Is it asking whether the “username” attribute was

previously set to “unclebob”?
successfully set to “unclebob”?

It’s hard to infer the meaning from the call because
it’s not clear whether the word “set” is a verb or an
adjective.

XP Immersion TM www.objectmentor.com

29Copyright 1999-2000 by Object Mentor, Inc. All Rights Reserved

57

Example

The author intended set to be a verb,
but in the context of the if statement it feels like an
adjective.
So the statement reads as:

“If the username attribute was previously set to unclebob”

and not as:
“set the username attribute to unclebob and if that worked
then...”.

We could try to resolve this by renaming the set
function to setAndCheckIfExists,

but that doesn’t much help the readability of the if statement.

58

Example

The real solution is to separate the command
from the query

so that the ambiguity cannot occurr.

if (attributeExists("username")) {

setAttribute("username", "unclebob");

...

}

XP Immersion TM www.objectmentor.com

30Copyright 1999-2000 by Object Mentor, Inc. All Rights Reserved

Prefer exceptions to returning
error codes.

60

Returning errror codes

A subtle violation of command query separation.
It promotes commands being used as expressions
in the predicates of if statements.

if (deletePage(page) == E_OK)

This leads to deeply nested structures.
The caller must deal with the error immediatly.

XP Immersion TM www.objectmentor.com

31Copyright 1999-2000 by Object Mentor, Inc. All Rights Reserved

61

Returning Error Codes

if (deletePage(page) == E_OK) {
if (registry.deleteReference(page.name) == E_OK) {
if (configKeys.deleteKey(page.name.makeKey()) == E_OK){
logger.log("page deleted");

} else {
logger.log("configKey not deleted");

}
} else {
logger.log("deleteReference from registry failed");

}
} else {
logger.log("delete failed");
return E_ERROR;

}

62

Using Exceptions

If you use exceptions then t
the error processing code can be separated
from the happy-path code,
and can be simplified:

try {
deletePage(page);
registry.deleteReference(page.name);
configKeys.deleteKey(page.name.makeKey());

}
catch (Exception e) {
logger.log(e.getMessage());

}

XP Immersion TM www.objectmentor.com

32Copyright 1999-2000 by Object Mentor, Inc. All Rights Reserved

63

Extract try/catch blocks.

Try/catch blocks are ugly in their own right.
They confuse the structure of the code
and mix error processing with normal
processing.

So it is better to extract the bodies of the try
and catch blocks out into functions of their
own.

64

Extract try/catch blocks
public void delete(Page page) {
try {
deletePageAndAllReferences(page);

}
catch (Exception e) {
logError(e);

}
}

private void deletePageAndAllReferences(Page page) throws Exception {

deletePage(page);

registry.deleteReference(page.name);

configKeys.deleteKey(page.name.makeKey());

}

private void logError(Exception e) {

XP Immersion TM www.objectmentor.com

33Copyright 1999-2000 by Object Mentor, Inc. All Rights Reserved

65

Error handling is one thing.

A function that handles errors should do
nothing else.
This implies that the keyword try should be
the very first word in the function;
and that there should be nothing after the
catch/finally blocks.

66

Structured Programming

Dijkstra said:
every function,
and every block within a function,
should have one entry and one exit.

Following these rules means
there should only be one return statement in a
function,
no break or continue statements in a loop,
and never, ever, any goto statements.

XP Immersion TM www.objectmentor.com

34Copyright 1999-2000 by Object Mentor, Inc. All Rights Reserved

67

Structured Programming Eclipsed

While we are sympathetic to the goals and
disciplines of structured programming,

those rules serve little benefit when functions are very
small.
It is only in larger functions that such rules provide
significant benefit.

So in small functions the occasional:
multiple return,
break,
or continue statement

does no harm,
and can sometimes even be more expressive than the single
entry, single exit rule.

But goto should still be avoided.

Conclusion

XP Immersion TM www.objectmentor.com

35Copyright 1999-2000 by Object Mentor, Inc. All Rights Reserved

69

Domain Specific Languages

Every system is built from a domain specific
language

designed by the programmers to describe
that system.
Functions are the verbs of that language,
classes are the nouns.

The art of programming is, and has always
been, the art of language design.

70

Programs as Stories

Master programmers think of systems as stories to
be told

rather than programs to be written.
They use the facilities of their chosen programming
language

to construct a much richer and more expressive DSL
that they use to tell that story.
Part of that DSL is the hierarchy of functions that
describe all the actions that take place within that
system.
In an artful act of recursion, those actions are written
to use the very DSL they define to tell their own small
part of the story.

XP Immersion TM www.objectmentor.com

36Copyright 1999-2000 by Object Mentor, Inc. All Rights Reserved

71

The “Clean Code” project.

Articles:
The “Args” article.
The “Clean Code” book.

72

Contact Information

Robert C. Martin
unclebob@objectmentor.com

Website:
www.objectmentor.com

FitNesse:
www.fitnesse.org

