XP IMMERSION ™ a www.objectmentor.com
L

CLEAN CoDE Il

FUNCTIONS
Clean Code

A Handbook of Software Craftsmanship

Robert C. Martin
Object Mentor, Inc.

\ &

objectmentor.com

Copyright © 2008 by Object Mentor, Inc

s All Rights Reserved
Robert C. Martin

@ In the early days of programming

@we composed our systems of routines and
subroutines.

@in Fortran it was programs, subprograms, and
functions.

@ Nowadays only the function survives.

Copyright © 1999-2000 by Object Mentor, Inc. All Rights Reserved 1

XP IMMERSION ™ www.objectmentor.com

@ Not only is it long, but it's got
@duplicated code,
@lots of odd strings,

@many strange and inobvious data types and
APIs.

@ See how much sense you can make of it in
the next three minutes...

public static String testabl eHtnl (

PageDat a pageDat a,
bool ean i ncl udeSui t eSet up
) throws Exception {
W ki Page wi ki Page = pageDat a. get W ki Page() ;
StringBuffer buffer = new StringBuffer();
if (pageData. hasAttribute("Test")) {
if (includeSuiteSetup) {
W ki Page suiteSetup =
PageCraw er | npl . get | nheri t edPage(
Sui t eResponder. SUI TE_SETUP_NAME, wi ki Page
)

if (suiteSetup !'= null) {

AMILLL D Dat bk Dot b —

Copyright © 1999-2000 by Object Mentor, Inc. All Rights Reserved

XP IMMERSION ™

www.objectmentor.com

if (setup !'=null) {

W ki PagePat h set upPat h

wi ki Page. get PageCrawl er (). get Ful | Pat h(setup);

String setupPat hNane Pat hPar ser . r ender (set upPat h) ;

buf fer.append("!include -setup .")
. append(set upPat hNane)

.append("\n");

}
buf f er . append(pageDat a. get Content ());

if (pageData. hasAttribute("Test")) {

W ki Page teardown

PageCrawl er | npl . get | nheri t edPage(" Tear Down", wi ki Page) ;

if (teardown !'= null) {

W ki PagePat h t ear DownPat h

if (suiteTeardown != null) {

W ki PagePat h pagePat h

String pagePat hName Pat hPar ser . r ender (pagePat h) ;

buf fer.append("!include -teardown .")
. append(pagePat hNane)

.append("\n");

}
pageDat a. set Cont ent (buffer.toString());

return pageData.getHtm ();

sui t eTear down. get PageCr awl er () . get Ful | Pat h(sui t eTear down) ;

Copyright © 1999-2000 by Object Mentor, Inc. All Rights Reserved

XP IMMERSION ™ a www.objectmentor.com
L

@ Do you understand the function after three minutes
of study?

@ Probably not.
@ There’s too much going on in there,
@ at too many different levels of abstraction.
@ There are strange strings
@ odd function calls
@ doubly nested if statements controlled by flags.

@ Ick!

7
@ With just a few simple
@method extractions,
@some renaming,

@and a little restructuring,

@ | was able to capture the intent of the
function.

@ See if you can understand the result in the
next 3 minutes?

Copyright © 1999-2000 by Object Mentor, Inc. All Rights Reserved

XP IMMERSION ™ www.objectmentor.com

public static String renderPageWt hSet upsAndTear downs(

PageDat a pageDat a, bool ean isSuite
) throws Exception {

bool ean i sTest Page = pageDat a. hasAttri bute("Test");

if (isTestPage) {
W ki Page test Page = pageDat a. get W ki Page();
StringBuf fer newPageContent = new StringBuffer();
i ncl udeSet upPages(t est Page, newPageContent, isSuite);
newPageCont ent . append(pageDat a. get Content ());

i ncl udeTear downPages(t est Page, newPageContent, isSuite);

naneDat a _cet Cant ent (newPaneCantent taStrinal)):

@ Still you probably understand that it:
@includes setup and teardown pages into a test
page,
@renders that page into HTML.

10

Copyright © 1999-2000 by Object Mentor, Inc. All Rights Reserved

XP IMMERSION ™ ﬁ www.objectmentor.com
L

@ You also probably realize:

@ That this function belongs to some kind of web-based
testing framework.

@ Divining that information from the refactored
function is pretty easy,

@ but it's pretty well obscured by the initial code.

11

@ What is it that makes the refactored function easy to
read and understand?

@ How can we make a function communicate it's
intent?

@ What attributes can we give our functions that will
allow a casual reader to intuit the kind of program
they live inside?

12

Copyright © 1999-2000 by Object Mentor, Inc. All Rights Reserved 6

XP IMMERSION ™ G www.objectmentor.com
¥

Small!

The First Rule of Functions.

@ The first rule:
@ They should be small.

@ The second rule:
@ They should be smaller than that.

14

Copyright © 1999-2000 by Object Mentor, Inc. All Rights Reserved 7

XP IMMERSION ™ a www.objectmentor.com
L

@ In the ‘80s we used to say that a function should be
no bigger than a screenful.
@ Of course VT100 screens were 24 lines by 80
columns,

@ and our editors used 4 lines for administrative
purposes.

@ Nowadays with a cranked down font and a nice big
monitor
@ you can fit 150 characters on a line, and a 100 lines

or more on a screen. Lines should not be 150
characters long.

15

@ Functions should not be 100 lines long.

@ Functions should hardly ever be 20 lines
long.

@ Indeed, the refactored function was too long.
@It should have been:

public static String render PageWt hSet upsAndTear downs(
PageDat a pageData, bool ean isSuite) throws Exception {
if (isTestPage(pageData))
i ncl udeSet upAndTear downPages(pageData, isSuite);
return pageData.getH m ();

16

1

Copyright © 1999-2000 by Object Mentor, Inc. All Rights Reserved 8

XP IMMERSION ™ a www.objectmentor.com
L

@ Smallness implies that blocks within:
@ if statements,
@ else statements,
@ while statements,
@ and etc.,

@ should be one line long.

@ Probably that line should be a function call.
@ Not only does this keep the function small;
@ but it also adds documentary value

17

@ Smallness also implies:

@functions should not be large enough to hold
nested structures.

@ Therefore the indent level of a function should
not be greater than one or two.

@ This, of course, makes the functions easier to
read and understand.

18

Copyright © 1999-2000 by Object Mentor, Inc. All Rights Reserved 9

XP IMMERSION ™ G www.objectmentor.com
¥

Do One Thing

@ They should do it well.
@ They should do it only.

20

Copyright © 1999-2000 by Object Mentor, Inc. All Rights Reserved

10

XP IMMERSION ™ a www.objectmentor.com
L

@ The original code does lots more than one thing.
@ It's creating buffers,
@ fetching pages,
@ searching for inherited pages,
@ rendering paths,
@ appending arcane strings,
@ and generating HTML,
@ among other things.
@ The re-refactored code is doing one simple thing.
@ including setups and teardowns into test pages.

21

@ It's easy to make the case that it's doing 3
things:
Q
@ Determine whether the page is a test page.
Q
@If so, include setups and teardowns.
Q
@Render the page in HTML.

@ So which is it?
22

ls the fiinctinn doina ane thina

Copyright © 1999-2000 by Object Mentor, Inc. All Rights Reserved]1

XP IMMERSION ™ a www.objectmentor.com

L

@ The steps are one level of abstraction below the
name of the function.
@ A brief TO paragraph:
@ TO RenderPageWithSetupsAndTeardowns we:
@ check to see if the page is a test page

@and if so we include the setups and teardowns.
2 In either case we render the page in HTML.

@ If a function’s steps are one level below the stated
name of the function,

@ then the function is doing one thing.

23

@ Decompose a larger concept
@ (i.e. the name of the function)

@ into a set of steps at the next level of
abstraction.

24

Copyright © 1999-2000 by Object Mentor, Inc. All Rights Reserved

12

XP IMMERSION ™ a www.objectmentor.com
L

@ It should be very clear that

@ The original code contains steps at many different
levels of abstraction.

@ So it is clearly doing more than one thing.
@ Even the first refactoring has two levels of
abstraction,
@ as proved by our ability to shrink it down.

@ But it would be very hard to meaninfully shrink the
final.

& We could extract the if statment into a function named
includeSetupsAndTeardownslfTestPage,

@ but that simply restates the code without changing the
level of abstraction.

25

@ You can tell that a function is doing more
than “one thing”

@if you can extract a function from it

@with a name that is not merely a restatement
of its implementation.

26

Copyright © 1999-2000 by Object Mentor, Inc. All Rights Reserved 13

XP IMMERSION ™ G www.objectmentor.com
¥

@ We want the code to read like a top-down narrative.
@ We want every function to be followed by those at
the next level of abstraction,

@ We can read the program, descending one level of
abstraction at a time.

@ We want to read the program as if it were a set of
TO paragraphs,
@ each of which describes the current level of
abstraction

@ and references subsequent TO paragraphs at the
next level down.

27

@ To include the setups and teardowns we
@ include setups,
@ then include the test page content,
@ then include the teardowns.
@ To include the setups we
@ include the suite setup if this is a suite,
@ then include the regular setup.
@ To include the suite setup we
@ search the parent hiearchy for the “SuiteSetUp” page
@ add an !include with the path of that page.
@ To search the parent...

28

Copyright © 1999-2000 by Object Mentor, Inc. All Rights Reserved l 4

XP IMMERSION ™ G www.objectmentor.com

29

L

Use descriptive names.

Copyright © 1999-2000 by Object Mentor, Inc. All Rights Reserved

15

XP IMMERSION ™ a www.objectmentor.com
L

@ | changed the name of our example function
@ from testableHtml

@ To renderPageWithSetupsAndTeardowns.
@ This is a far better name.

@ | also gave the private methods a descriptive name
@ such as isTestable
@ includeSetupAndTeardownPages.

@ It is hard to overestimate the value of good names.

31

@ “You know you are working on clean code
when each routine turns out to be pretty
much what you expected.”

@ Half the battle to achieving that principle is

@choosing good names
@for small functions
@that do one thing.

32

Copyright © 1999-2000 by Object Mentor, Inc. All Rights Reserved 16

XP IMMERSION ™ a www.objectmentor.com
L

@ The smaller and more focussed a function is,
@the easier it is to choose a descriptive name.

@ Conversely, if you can’'t choose a descriptive
name

@ Your function is probably too big
@And does more than ONE THING.

33

@ Don't be afraid to make a name long.
@ A long descriptive name is better than
@ a short enigmatic name.
@ a long descriptive comment.
@ Use a naming convention that allows multiple words
to be easily read in the function names

@ Like Camel Case or Underscores.
@ IncludeSetUpAndTearDown
@ Include_setup_and_teardown
@ Make use of those multiple words to give the
function a name that says what it does.

34

Copyright © 1999-2000 by Object Mentor, Inc. All Rights Reserved 17

XP IMMERSION ™ a www.objectmentor.com
L

@ Don't be afraid to spend time choosing a name.
@ Indeed, you should try several different names
@ and read the code with each in place.

@ Modern IDEs like Eclipse or IntelliJ make it trivial to
change names.

@ Use one of those IDEs and experiment with different
names until you find one that is as descriptive as
you can make it.

35

@ Choosing descriptive names will clarify the
design of the module in your mind,

@and help you to improve it.

@ Hunting for a good name often results in a
favorable restructuring of the code.

36

Copyright © 1999-2000 by Object Mentor, Inc. All Rights Reserved 18

XP IMMERSION ™

@ Use the same phrases, nouns, and verbs in the
function names you choose for your modules.

@ Consider, for example, the names
@ includeSetupAndTeardownPages,
@ includeSetupPages,
@ includeSuiteSetupPage,
@ includeSetupPage.

@ The similarity of those names allows the sequence to
tell a story.

@ Indeed, if I showed you just the sequence above,
you’'d ask yourself:

@ “What happened to includeTeardownPages,
includeSuiteTeardownPage, and includeTeardownPage?”

@ How's that for being “...pretty much what you expected.”

37

No more than three arguments.

Copyright © 1999-2000 by Object Mentor, Inc. All Rights Reserved

www.objectmentor.com

19

XP IMMERSION ™ a www.objectmentor.com

L

@ he ideal number of arguments for a function is zero
(niladic).

@ Next comes one (monadic),

@ Followed closely by two (dyadic).

@ Three arguments (triadic) should be avoided where
possible.

@ More than three (polyadic) requires very special
justification,
@ and then shouldn’t be used anyway.

39

@ They take a lot of conceptual power.
@ That's why | got rid of almost all of them from the
example.
@ Consider, for example, the StringBuffer in the
example.
@ We could have passed it around as an argument
@ rather than making it an instance variable;

@ but then our readers would have had to interpret it
each time they saw it.

40

Copyright © 1999-2000 by Object Mentor, Inc. All Rights Reserved

20

XP IMMERSION ™ G www.objectmentor.com
L

@ When you are reading the story told by the module,
@ includeSetupPage() is easier to understand than
@ includeSetupPagelnto(newPageContent).

@ The argument is at a different level of abstraction
than the function name,

@ and forces you to know a detail (i.e. StringBuffer) that
isn’t particularly important at that point.

41

@ Harder to understand than input arguments.

@ We are used to the idea of information going
in to the function through arguments

@and out through the return value.

@ We don’t usually expect information to be
going out through the arguments.

@ So output arguments often cause us to do a
double-take.

42

Copyright © 1999-2000 by Object Mentor, Inc. All Rights Reserved 2 l

XP IMMERSION ™ G www.objectmentor.com
L

@ There are two common reasons to pass a single
argument into a function.
@ You may be asking a question about that argument
as in: boolean fileExists(“MyFile”).
@ Or you may be operating on that argument,
@ transforming it into something else and returning it.

@ For example: InputStream fileOpen(“MyFile”) transforms a
String into an InputStream return value.

@ These two uses are what readers expect when they
see a function.

@ You should choose names that make the distinction
clear.

43

@ Passing a boolean into a function is a truly
terrible practice.
@ It immediatly complicates the signature of the
method,
@loudly proclaiming that this function does
more than one thing.

@It does one thing if the flag is true, and
another if the flag is false!

44

Copyright © 1999-2000 by Object Mentor, Inc. All Rights Reserved 22

XP IMMERSION ™ G www.objectmentor.com
¥

@ A function with two arguments is harder to
understand than a monadic function.
@writeField(name) is easier to understand than
writeField(outputStream, name).

@the first glides past the eye. easily depositing its
meaning.

@The second requires a short pause until we learn
to ignore the first parameter.

@We should never ignore any part of the code.
@The parts we ignore are where the bugs will hide.

45

@ Functions that take three arguments are significantly
harder to understand than dyads.

@ The issues of ordering, pausing, and ignoring are
more than doubled.

@ Consider the common overload of assertEquals that
takes three arguments:
@ assertEquals(message, expected, actual).

@ How many times have you read the message and
thought it was the expected?

@ | have stumbled and paused over that particular triad
many times.

@ In fact, every time | see it | do a double-take and then
learn to ignore the message.

46

Copyright © 1999-2000 by Object Mentor, Inc. All Rights Reserved 23

XP IMMERSION ™

No side-effects.

@ Your function promises to do one thing,

@but it also does other, hidden, things.
@to the variables of it's own class.

@to the parameters passed into the function,
@to system globals.

@ They are devious and damaging mistruths
that result in

@strange temporal couplings
@and order dependencies.

48

Copyright © 1999-2000 by Object Mentor, Inc. All Rights Reserved

G www.objectmentor.com
L

24

XP IMMERSION ™ www.objectmentor.com

@ Consider the seemingly innocuous function
that uses a standard algorithm to match a
userName to a password. It returns true if they
match, and false if anything goes wrong.

@ But it also has a side-effect.

@Can you spot it?
o

49

public class UserValidator {

private Cryptographer cryptographer;

public bool ean checkPassword(String userNane, String password) {

User user = User Gateway. fi ndByName(user Nane) ;

if (user !'= User.NULL) {

String codedPhrase = user. get PhraseEncodedByPassword();

String phrase = cryptographer. decrypt(codedPhrase, password);

50 if ("Valid Password". equal s(phrase)) {

Copyright © 1999-2000 by Object Mentor, Inc. All Rights Reserved 25

XP IMMERSION ™ G www.objectmentor.com

L

@ The side-effect is

@ the call to Session.initialize(),
@ of course.
@ The checkPassword function, by its name, says that
it checks the password.
@ The name does not imply that it initializes the
session.

@ So a caller who believes what the name of the
function says, runs the risk of erasing the existing
session data when they decide to check the validity of
the user.

51

@ The side-effect creates a temporal coupling.

@ checkPassword can only be called at certain times
@ (i.e. when it is safe to initialize the session).

@ If it is called out of order,
@ session data may be inadvertently lost.

@ Temporal couplings are confusing,
@ especially when hidden as a side effect.
@ If you must have a temporal coupling,
@ you should make it clear in the name of the function.

@ In this case we might rename the function
checkPasswordAndInitializeSession,
@ though that certainly violates “Do One Thing".

52

Copyright © 1999-2000 by Object Mentor, Inc. All Rights Reserved

26

XP IMMERSION ™ G www.objectmentor.com

|

Command Query Separation

@ Functions should either
@do something,
@or answer something,
@but not both.
@ Either your function should
@change the state of an object,

@or it should return some information about
that object.

@ Doing both often leads to confusion.

54

Copyright © 1999-2000 by Object Mentor, Inc. All Rights Reserved

27

XP IMMERSION ™ ﬁ www.objectmentor.com
L

@ Consider, for example, the following function:

public bool ean set(String attribute, String val ue);

@ |t sets the value of a named attribute
@returns true if it is successful
@false if no such attribute exists.

55

@ This leads to odd statements like this:

if (set("username", "unclebob"))...

@ What does that mean?

@ Is it asking whether the “username” attribute was
@ previously set to “unclebob™?
@ successfully set to “unclebob”?
@ It's hard to infer the meaning from the call because
it’s not clear whether the word “set” is a verb or an
adjective.

56

Copyright © 1999-2000 by Object Mentor, Inc. All Rights Reserved 28

XP IMMERSION ™ ﬁ www.objectmentor.com

L

@ The author intended set to be a verb,
@ but in the context of the if statement it feels like an
adjective.
@ So the statement reads as:
@ “If the username attribute was previously set to unclebob”
@ and not as:

@ “set the username attribute to unclebob and if that worked
then...”.

@ We could try to resolve this by renaming the set
function to setAndCheckIfExists,
@ but that doesn’t much help the readability of the if statement.

57

@ The real solution is to separate the command
from the query

@ so that the ambiguity cannot occurr.

if (attributeExists("usernanme")) {

setAttribute("username”, "uncl ebob");

58

Copyright © 1999-2000 by Object Mentor, Inc. All Rights Reserved

29

XP IMMERSION ™ G www.objectmentor.com

L

Prefer exceptions to returning
error codes.

@ A subtle violation of command query separation.

@ It promotes commands being used as expressions
in the predicates of if statements.

@ if (deletePage(page) == E_OK)
Q

@ This leads to deeply nested structures.
@ The caller must deal with the error immediatly.

60

Copyright © 1999-2000 by Object Mentor, Inc. All Rights Reserved

30

XP IMMERSION ™ ﬁ www.objectmentor.com
L

i f (del etePage(page) == E_ OK) {
if (registry.del eteReference(page. nane) == E_OK) {

i f (configKeys. del et eKey(page. nane. makeKey()) == E_CK){
| ogger .| og("page del eted");
} else {

| ogger .l og("configKey not deleted");

} else {
| ogger. |l og("del eteReference fromregistry failed");

} else {
| ogger.log("delete failed");
return E_ERROR

}

61

@ If you use exceptions then t

@the error processing code can be separated
from the happy-path code,

@and can be simplified:

try {
del et ePage(page) ;
regi stry. del et eRef er ence(page. nane) ;

confi gKeys. del et eKey(page. nane. makeKey()) ;
}
catch (Exception e) {

| ogger. | og(e. get Message());
}

62

Copyright © 1999-2000 by Object Mentor, Inc. All Rights Reserved

31

XP IMMERSION ™

@ Try/catch blocks are ugly in their own right.
@ They confuse the structure of the code

@and mix error processing with normal
processing.

@ So it is better to extract the bodies of the try
and catch blocks out into functions of their
own.

63

public void del et e(Page page) {

try {
del et ePageAndAl | Ref er ences(page) ;

}
catch (Exception e) {
| ogError(e);

private voi d del et ePageAndAl | Ref erences(Page page) throws Exception {
del et ePage(page) ;
regi stry. del et eRef er ence(page. nane) ;

confi gKeys. del et eKey(page. nane. makeKey());

private void loagFrror(Fxception e) {

Copyright © 1999-2000 by Object Mentor, Inc. All Rights Reserved

www.objectmentor.com

32

XP IMMERSION ™ a www.objectmentor.com
L

@ A function that handles errors should do
nothing else.

@ This implies that the keyword try should be
the very first word in the function;

@ and that there should be nothing after the
catch/finally blocks.

65

@ Dijkstra said:

@ every function,

@ and every block within a function,

@ should have one entry and one exit.
@ Following these rules means

@ there should only be one return statement in a
function,

@ no break or continue statements in a loop,
@ and never, ever, any goto statements.

66

Copyright © 1999-2000 by Object Mentor, Inc. All Rights Reserved 33

XP IMMERSION ™ G www.objectmentor.com
W

@ While we are sympathetic to the goals and
disciplines of structured programming,

@ those rules serve little benefit when functions are very
small.

@ Itis only in larger functions that such rules provide
significant benefit.
@ So in small functions the occasional:

@ multiple return,
@ break,
@ or continue statement

@ does no harm,
@ and can sometimes even be more expressive than the single

entry, single exit rule.
@ But goto should still be avoided.
67

Conclusion

Copyright © 1999-2000 by Object Mentor, Inc. All Rights Reserved 34

XP IMMERSION ™ G www.objectmentor.com
¥

@ Every system is built from a domain specific
language
@ designed by the programmers to describe
that system.
@ Functions are the verbs of that language,
@classes are the nouns.

@ The art of programming is, and has always
been, the art of language design.

69

@ Master programmers think of systems as stories to
be told

@ rather than programs to be written.

@ They use the facilities of their chosen programming
language

@ to construct a much richer and more expressive DSL
that they use to tell that story.

@ Part of that DSL is the hierarchy of functions that
describe all the actions that take place within that
system.

@ In an artful act of recursion, those actions are written
to use the very DSL they define to tell their own small
part of the story.

70

Copyright © 1999-2000 by Object Mentor, Inc. All Rights Reserved 35

XP IMMERSION ™ ‘ www.objectmentor.com

L

@ Articles:
@The “Args” article.
@The “Clean Code” book.

71

@ Robert C. Martin
unclebob@objectmentor.com

@ Website:
www.objectmentor.com

@ FitNesse:
www.fithesse.orqg

72

Copyright © 1999-2000 by Object Mentor, Inc. All Rights Reserved

36

