
Multilanguage
Programming

Steve Vinoski
Member of Technical Staff

Verivue
Westford, MA USA

http://steve.vinoski.net/
vinoski@ieee.org

http://steve.vinoski.net
http://steve.vinoski.net
mailto:vinoski@ieee.org
mailto:vinoski@ieee.org

Characteristics of Exceptional People

•Name a trait that exceptional people from
different walks of life all have in common

Exceptional musicians

Exceptional athletes

Exceptional chefs

Exceptional dancersExceptional nurses

Exceptional mechanics
Exceptional authors

Exceptional software developers

Extensive Vocabularies

techniques
moves

approaches

variationstools

combinations

algorithms

patterns

recipes

abstractions

effects

similarities

situations

Extensive Vocabularies

How many of you believe

you’ve already learned

the last programming language

you’ll ever need?

The Blub Paradox

• In his essay “Beating the Averages” Paul
Graham introduced this idea to discuss
power of programming languages

• He uses a hypothetical language called
“Blub” that lies in the middle of the
language power continuum

Weaker languages Blub Stronger languages

The Blub Programmer

• Sees languages less powerful than Blub as
useless due to missing Blub features

• Sees languages more powerful than Blub as
“just weird”

• this is because the Blub programmer can
think only in Blub

• can’t relate to features that do not
correspond directly to features in Blub

“...an ‘X programmer,’ for any value of X, is a
weak player. You have to cross-train to be a
decent athlete these days. Programmers need to
be fluent in multiple languages with
fundamentally different ‘character’ before they
can make truly informed design decisions.”

Steve Yegge
http://steve-yegge.blogspot.com/2007/12/codes-worst-enemy.html

http://steve-yegge.blogspot.com/2007/12/codes-worst-enemy.html
http://steve-yegge.blogspot.com/2007/12/codes-worst-enemy.html

• Enhanced developer productivity

• Increased practicality of solutions

• Avoiding accidental complexity

• Better integration with other systems

• Take advantage of advances in hardware, compilers,
VMs, and languages themselves

• Lower development costs

• Improved career possibilities

Why Multilanguage

• In The Mythical Man Month Fred Brooks provides
this software development equation:

• He also cites a number of independent studies that
find similar equations

• 10x larger means 32x more effort

• Brevity really really matters

• Smaller programs are easier to develop and
maintain

effort = constant * (number of instructions)1.5

Productivity

“Many of the classic problems of developing software
products derive from this essential complexity and
its nonlinear increases with size. From the complexity
comes the difficulty of communication among
team members, which leads to product flaws, cost
overruns, schedule delays. From the complexity
comes the difficulty of enumerating, much less
understanding, all the possible states of the program, and
from that comes the unreliability.”

Fred Brooks
“No Silver Bullet: Essence and Accidents of Software Engineering”

Examples

Tim Bray's
“Wide Finder”

• Simple and not unusual problem: analyze
textual website logfiles looking for hits on
certain resources, and print out a count of
the top 10

• Try to do it in a way that takes advantage of
multicore processors (Tim wanted to
exercise a T5120 multicore Sun box)

Wide Finder Results
• Fastest solutions were in Perl

• Python solutions were also fast

• darn those “slow” dynamic languages ;-)

• JoCaml, a functional language, was at the top for awhile

• it combines OCaml with the join calculus for
concurrency and distribution

• Erlang, which according to its creator Joe Armstrong
wasn’t made for problems like this, was 3rd among
languages

• Popular languages like Java, C++, C#, C weren’t
anywhere near the top

• There’s an impedance mismatch between XML and
mainstream programming languages

• navigate XML via tree structures, callbacks, or pull
parsing

• easily lose the relationship to the original XML

•What if XML were native to your programming
language instead, not as strings but as a normal
program text?

• Result: better productivity, and smaller code that’s
easier to relate to the XML it manipulates

Native XML

Write literal XML in E4X:

To represent this XML:

Note how E4X
treats XML
natively, not as
strings!

E4X is an extension of JavaScript

var foo = <person name='Munster'/>
foo.address = '1313 Mockingbird Lane'
foo.address.@type = 'home'

<person name="Munster">
 <address type="home">
 1313 Mockingbird Lane
 </address>
</person>

ECMAscript for XML (E4X)

• Apache CXF supports server-side E4X (and
JavaScript) service impls for JAX-WS 2.0

• E4X impls are 5x smaller than Java code

• http://steve.vinoski.net/pdf/IEEE-Scripting_JAX-WS.pdf

• http://cwiki.apache.org/CXF20DOC/javascript.html

• Project Phobos, part of Glassfish

• https://phobos.dev.java.net/overview.html

• Scala, a JVM-based functional language, also
supports literal XML

E4X in the Wild

http://steve.vinoski.net/pdf/IEEE-Scripting_JAX-WS.pdf
http://steve.vinoski.net/pdf/IEEE-Scripting_JAX-WS.pdf
http://cwiki.apache.org/CXF20DOC/javascript.html
http://cwiki.apache.org/CXF20DOC/javascript.html
https://phobos.dev.java.net/overview.html
https://phobos.dev.java.net/overview.html

• Multicore systems are commonplace

• Number of cores per chip keeps rising, and
software needs to take advantage of them

• Mainstream languages are poor at helping
with concurrency, due to shared state

• How many developers are truly expert at
concurrent programming?

Concurrency

• Sharing state among threads and managing it
is the root of concurrency problems

• mainstream languages force us to do this

• Asking the developer to guard and
synchronize and lock and protect?

• miss any shared state, your app is wrong

• lock too coarsely and your app is too slow

• lock too finely and you increase chances
for deadlock

Shared State

“What if the OOP parts of other languages (Java,
C++, Ruby, etc.) has the same behavior as their
concurrency support? What if you were limited to
only creating 500 objects total for an application
because any more would make the app unstable
and almost certainly crash it in hard-to-debug
ways? What if these objects behaved differently
on different platforms?”

Joe Armstrong, creator of Erlang
as quoted in

http://weblog.hypotheticalabs.com/?p=217

http://weblog.hypotheticalabs.com/?p=217
http://weblog.hypotheticalabs.com/?p=217

• Erlang began life in 1986 for developing highly
reliable distributed concurrent systems

• Developed at Ericsson for telecom equipment

• Open sourced in 1998, it’s been used to
develop systems with guaranteed nine nines
reliability (31.5ms downtime per year)

• Under active development, version R12B-2
came out in April 2008

Erlang

• Erlang processes are very lightweight

• Create and destroy 1 million in 0.53s on
MacBook Pro

• Contrast with other languages on the same
machine:

• Java: 250,000 threads in 48.6s

• C++: 7044 in 1.3s, then out of resources

Erlang Concurrency

Threads Without Limits

• No artificial limits on threads changes how
you approach problems

• for example, Erlang servers scale better
than heavy-thread languages (search for
“Apache vs. Yaws” for example)

• No more thread pooling, leader-follower,
or other non-trivial patterns

• Erlang avoids shared state, uses message passing
instead

• the type of message passing originally intended
for OO languages

• very fast, asynchronous, same host or across
hosts

• Erlang variables cannot be re-assigned; they’re
bound once and that’s it, to avoid mutable state

• No explicit code for concurrency guards, locks,
synchronization etc. required

Message Passing

• Enabling highly reliable systems is a primary goal for
Erlang

• It encourages designs that accept that failure will
occur and must be dealt with

• Processes can be arranged in distributed
supervision trees, where supervisors watch and
restart failed processes

• Code can be loaded into running systems

• The Open Telecom Platform (OTP) libraries provide
common application behaviors supporting reliability

Reliability

• Most of my career has been writing C++ and Java
middleware; wish had I known about Erlang years ago

• I could have produced more reliable systems that
scaled better...

• ...and cost a lot less to develop and maintain

• This often results when you try new languages

• Generalization of Greenspun’s Tenth Rule: “Any
sufficiently complicated platform contains an ad hoc,
informally-specified, bug-ridden, slow implementation of
half of a functional programming language.”

Erlang, Middleware, and
an Observation

http://en.wikipedia.org/wiki/Greenspun's_Tenth_Rule
http://en.wikipedia.org/wiki/Greenspun's_Tenth_Rule

• One of the most important languages
a developer can learn

• they open up vast possibilities for
searching, sorting, and data
transformation

• Like all good languages, regexps change
the way you think about and approach
problems

Regular Expressions

• Ignorance and Fear

• Tools

• Testing

• Cross-language integration

• Learning materials, community and support

Barriers to Multi-
Language Programming

T
he C

hasm

Technology

Enthusiast

Visionary

Pragmatist

Conservative

Skeptic

time

Early
Market

Mainstream
Market

Technology Adoption
Lifecycle

• Disruptive technologies are never “good enough” for
Pragmatists, Conservatives, Skeptics

• 13 years ago, C++ guys said Java was too slow; today,
Java guys say Ruby is too slow — hmm...

• if the technologies are useful, they win anyway due to
lower cost

• Different adopter categories never agree on technology

• real source of many “technical” disagreements

• Technology Enthusiasts and Skeptics can’t even relate

Technology Adoption
Things To Remember

• Some believe all languages must be as large and
complicated as Java and C++ (related to Blub
Paradox)

• result: an unwillingness to look at new languages,
due to the assumption they’ll take years to learn

• More languages you know, learning becomes easier

• after you know a few, you find many concepts
across languages are similar

• identify language strengths and weaknesses and
apply them appropriately

Ignorance and Fear

• Eclipse, Netbeans, Visual Studio deal with multiple languages to
varying degrees

• Language and editor can become mutual detrimental
dependencies

• can’t write the language without IDE, and can’t use the IDE
with other languages

• can result in a developer who’s unable to move along with
technology changes

• Personally, I use emacs (for 23+ years)

• amazingly rich, and infinitely extensible in emacs-lisp

• can use it to develop in any language and not have to wait for
an IDE provider to give me features

Editors and IDEs

• Yes, languages provide debuggers

• Many “dynamic languages” provide interactive prompts

• aka REPLs (read-eval-print loops)

• development/debugging merge together

• interactive development tends to include more
exploration and experimentation, leading to more
insightful solutions

• can also help you learn the language faster

• Profiling, tracing, logging typically exist as well

• If nothing else there’s always the good old “print”
debugger

Debugging

Testing
• Focus on Test-Driven Development over the past

decade means test frameworks are available for
many languages

• Unit testing critical to making sure code in each
language is correct

• When adding languages to an existing system, be
sure to fit the new tests to the old harness

• make reporting (printed output, return codes)
the same

• important for system test and QA

• Use Inter-Program Communication (IPC)-based
integration (i.e., the network)

• Foreign function interfaces for C

• The JVM is becoming a multi-language VM

• JVM-based languages can generally talk to each other
and to Java

• Makes Java libraries available to other languages

• Significant interest in JRuby, Scala, Groovy, JavaScript/
E4X (Rhino)

• Microsoft Common Language Runtime (CLR) supports
multi-language integration

Cross-Language Integration

Multilanguage VMs
• VM-based multi-lingual development is

currently crossing the chasm

• if your organization is to the far right of
the technology adoption curve, it’ll be a
few more years before they’ll even
consider multi-lingual development

• Ironically, Java programmers have a
tendency to be mono-lingual but the JVM
lets them try other languages with little
churn, little risk, and little cost

• Use another language on the “edge” of your system

• write a client in a different language

• write some tests in a different language, works
well for distributed systems

• keep the core in Java or C++ or whatever it is

• Find a recurring problem in your business and
consider what other language might be better for
solving it

• coolness doesn’t cut it

• a good solution can show true business value

Getting Started

Team Issues
• Don’t let a lone programmer plow ahead and

leave everyone behind

• do the work with a team of at least 2, gives you
a more balanced assessment of what’s good and
what isn’t, and you can help each other learn

• Don’t bite off more than you can chew

• do your homework

• don’t make promises based on results read in a
blog somewhere, instead do the work and
experiments for yourself and prove the value

• Continuous technology advances mean that
learning and applying new languages is inevitable,
especially if you want to stay employed

• Don’t fall into the trap thinking that all languages
are as big and complicated as Java or C++

• Using the right language can mean significantly
increased productivity, vastly fewer lines of code,
and greatly enhanced problem-solving capabilities

Summary

“If you want a new idea, you have to silence your inner
critic. Your sense of right and wrong, of smart and
stupid works by comparing new ideas to what you
already know. Your sense of what would be a good fit
for you works by comparing new things to who you
already are. To learn and grow, you must let go of you,
you must be young again, you must accept that you
don’t understand and seek to understand rather than
explaining why it doesn’t make any sense.”

Reginald Braithwaite
as quoted in

http://weblog.raganwald.com/2008/04/why-we-are-biggest-obstacle-to-our-own.html

http://weblog.raganwald.com/2008/04/why-we-are-biggest-obstacle-to-our-own.html
http://weblog.raganwald.com/2008/04/why-we-are-biggest-obstacle-to-our-own.html

• Reginald Braithwaite’s blog: http://weblog.raganwald.com/

• Ola Bini’s blog: http://ola-bini.blogspot.com/

• Charles Nutter’s blog: http://headius.blogspot.com/

• James Hague’s blog: http://prog21.dadgum.com/

• John Lam’s blog: http://www.iunknown.com/

• Lambda the Ultimate: http://lambda-the-ultimate.org/

• Ted Neward’s blog: http://blogs.tedneward.com/

• Debasish Ghosh’s blog: http://debasishg.blogspot.com/

• Oliver Steele’s “The IDE Divide”: http://osteele.com/archives/2004/11/ides

• My own blog: http://steve.vinoski.net/blog/

For More Information

http://weblog.raganwald.com
http://weblog.raganwald.com
http://ola-bini.blogspot.com
http://ola-bini.blogspot.com
http://headius.blogspot.com
http://headius.blogspot.com
http://prog21.dadgum.com
http://prog21.dadgum.com
http://www.google.com/
http://www.google.com/
http://lambda-the-ultimate.org
http://lambda-the-ultimate.org
http://blogs.tedneward.com
http://blogs.tedneward.com
http://debasishg.blogspot.com
http://debasishg.blogspot.com
http://osteele.com/archives/2004/11/ides
http://osteele.com/archives/2004/11/ides
http://steve.vinoski.net/blog/
http://steve.vinoski.net/blog/

