
1

Enterprise Java, Web Services and XML

Are your services loosely coupled?

Web Services Training & Consulting

thilo@frotscher.com

http://www.frotscher.com

(C) 2008 Thilo Frotscher 2

Introduction

• Independent Software Architect and Trainer
– Enterprise Java

– Web Services, XML & Interoperability

– Enterprise Architectures

• Customizable inhouse training courses
– Apache Axis2, Web Service Standards, Best Practices etc

• (Co-)author of three books on Web Services & SOA

• Articles for software development magazines

• Expert advisor for other books on XML & Web Services

• Currently based in New Zealand

• Always interested in exciting project opportunities ☺

2

(C) 2008 Thilo Frotscher 3

Motivation

• SOA and Web Services have been hot topics for some time

• Web Service technology is widely used these days

• Many organizations have begun to adopt the approach
to take advantage of the characteristics of services

– One of the most widely known benefits is “loose coupling”

• So does that mean, just building services will always result

in a loosely coupled system? Let’s see…

Are your services loosely coupled?

"One of the goals of a service oriented architecture is to ensure that

components are as loosely coupled as possible. Loosely coupled

architectures are much easier to maintain and reuse.”
(http://www.serviceoriented.org)

(C) 2008 Thilo Frotscher 4

What does “coupling” actually mean?

Coupling refers to the interrelatedness and interdependencies between

two or more components or web services.

How easy is it to change something about service A

without having to change service B?

If many changes in service A require something in B to be changed,

they are tightly coupled.

If A can be changed easily without B being touched,

they are loosely coupled.

(http://www.serviceoriented.org)

Are your services loosely coupled?

3

(C) 2008 Thilo Frotscher 5

• Contract-First development…

– Define the service interface (WSDL / XSD)

– Generate a service skeleton and client stubs

– Implement and deploy the service

– Integrate the generated stub into a consuming application

• Now, are these applications loosely coupled?

Typical usage pattern for Web Services

S

T

U

B

S
E
R
V
I
C
E

L
I
S
T
E
N
E
R

SOAP/HTTPApplication A Application B

Are your services loosely coupled?

(C) 2008 Thilo Frotscher 6

A more complex scenario…

• Are these services loosely coupled?

Application

A

External System

C

External System

D

D

R

O

P

B

O

X

FTP

DMZ

FTP

HTTP

Are your services loosely coupled?

Application

B

Integration Hub /

Process Engine

4

(C) 2008 Thilo Frotscher 7

A few years later…

• As more systems are integrated over time, the increasing

number of point-to-point connections results in a big knot

External System

A

D
R
O
P
B
O
X

Application

A

FTP

DMZ

FTP

HTTP

External System

B

Application

C

Application

E

Application
D

Integration
Hub

Integration

Hub

Application

F

Application

G

Integration

Hub
Application

B

Tightly coupled architectures are
much harder to maintain and reuse!

Are your services loosely coupled?

(C) 2008 Thilo Frotscher 8

…

RPC-type integration leads to architectures where
applications are fairly tightly coupled together.

This also applies to Web Service technology.

Using SOAP for your communication does not mean
you’re automatically creating a loosely coupled system.

Are your services loosely coupled?

5

(C) 2008 Thilo Frotscher 9

Making assumptions…

• Coupling can occur in many ways - the more assumptions

parties make about each other, the tighter the coupling

• Location – what’s the physical address of the other party?

• Identity – what other parties are interested my message?

• Availability – are the other systems actually running?

• Data Format – what data format(s) do they support?

• Transport Protocol – how to communicate with them?

• Duration – how long does it take for them to respond?

• To achieve loose coupling, remove these dependencies

Are your services loosely coupled?

(C) 2008 Thilo Frotscher 10

Messaging

• Integration based on sending messages to channels,

rather than the invocation of specific procedures

• Communication is asynchronous – nobody needs to wait

– Applications don’t have to be running at the same time

• Messaging system is responsible for transferring the data

in a reliable fashion

• Point-to-point channel vs. Publish-subscribe channel

• Command message vs. Document message

� Independence of location, identity, duration & availability

Application

A
Channel

Application

B

Are your services loosely coupled?

6

(C) 2008 Thilo Frotscher 11

Building a more loosely coupled solution

Service
Consumer

Command

Service

Instance 1

Service

Instance 2

Service

Instance 3

Document

Apache ActiveMQ

Document

• Rebuild RPC by sending SOAP messages in RPC format

• Or even better – use the Document format

• Need a Web Service framework that supports JMS
for sending / receiving messages

Are your services loosely coupled?

(C) 2008 Thilo Frotscher 12

SOAP message formats: RPC vs. Document

• Document format leaves decision to the receiver, which

service method a message is dispatched to

• RPC message format results in tight coupling!

• SOAP was developed with messaging in mind - most

applications use it for synchronous RPC-style calls though

<makeNewReservation>

<hotelCode>HDHSYD</hotelCode>

<roomType>DBL</roomType>

<arrival>05-07-2008</arrival>

<departure>07-07-2008</departure>

<guestName>Bart Simpson</guestName>

</makeNewReservation>

<Reservation>

<hotelCode>HDHSYD</hotelCode>

<roomType>DBL</roomType>

<arrival>05-07-2008</arrival>

<departure>07-07-2008</departure>

<guestName>Bart Simpson</guestName>

</Reservation>

public Confirmation makeNewReservation (

String hotelCode,

String roomTye,

Date arrival

Date departure,

String guestName);

public void updateReservation(…)

public void sendInvoiceForReservation(…)

public Confirmation makeReservation(…)

?

?

?

Are your services loosely coupled?

7

(C) 2008 Thilo Frotscher 13

Example: Receiving JMS messages with Axis2

• Using a different transport is just a matter of configuration

• The service implementation does not need to be changed

• Changing service consumers for using JMS is equally easy

Message

Receiver

MCreq

MCresp

AxisEngine

HTTP

Sender
Hm H2H3 H1

Out Flow

AxisEngine

H1 H2 H3 Hn…

In Flow

H4

A
x
is

S
e
rv

le
t

MCreq

…

S
e
rv

ic
e

J
M

S
 L

is
te

n
e
r

JMS

Sender

SOAP

SOAP

Are your services loosely coupled?

(C) 2008 Thilo Frotscher 14

Message correlation with WS-Addressing

<soap:Envelope xmlns:wsa="http://www.w3.org/2005/08/addressing"

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Header>

<wsa:MessageID>urn:uuid:E9D931DE6E606E115D116722946291042</wsa:MessageID>

...

</soap:Header>

<soap:Body>

...

</soap:Body>

</soap:Envelope

<soap:Envelope xmlns:wsa="http://www.w3.org/2005/08/addressing"

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Header>

<wsa:MessageID>urn:uuid:E9D931DE6E606E115D116727390803123</wsa:MessageID>

<wsa:RelatesTo wsa:RelationshipType="http://www.w3.org/2005/08/addressing/reply">

urn:uuid:E9D931DE6E606E115D116722946291042

</wsa:RelatesTo>

...

</soap:Header>

<soap:Body>

...

</soap:Body>

</soap:Envelope

Are your services loosely coupled?

8

(C) 2008 Thilo Frotscher 15

Where to send the reply?

<soap:Envelope xmlns:wsa="http://www.w3.org/2005/08/addressing"

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Header>

<wsa:To>jms:/queue?destination=jms/MyApp2/NewReservationsQueue</wsa:To>

<wsa:ReplyTo>

<wsa:Address>jms:/queue?destination=jms/MyApp1/ConfirmationQueue</wsa:Address>

</wsa:ReplyTo>

<wsa:FaultTo>

<wsa:Address>jms:/queue?destination=jms/MyApp1/FaultQueue</wsa:Address>

</wsa:FaultTo>

...

</soap:Header>

<soap:Body>

...

</soap:Body>

</soap:Envelope

Are your services loosely coupled?

(C) 2008 Thilo Frotscher 16

So what about HTTP?

• SOAP was designed to be transport-independent –

the majority of applications use HTTP

• Seems to be a natural choice: most commonly used
protocol on the web and it can sneak through firewalls

• But HTTP was never intended to be used by applications

to communicate with each other!

– inherently unreliable

– designed for synchronous retrieval of documents

• Not well suited for asynchronous communication

• The use of alternative transport protocols for SOAP

is becoming more widespread

• Problem: too many applications take HTTP for granted!

Are your services loosely coupled?

9

(C) 2008 Thilo Frotscher 17

• Messages might be transported using various protocols

on their way to the ultimate receiver

• All metadata should be stored in the SOAP Header

• Use WS-Addressing to specify recipient(s)

Don’t rely on any transport protocol

Service

A

Service

B

Service
C

DMZ

SOAP

JMS

HTTP
Sender

SOAP

JMS

SOAP

HTTP

SOAP

HTTP

External

System

Are your services loosely coupled?

(C) 2008 Thilo Frotscher 18

More concepts & features of messaging systems

• Pipes and Filters

– add components that process the message on its way

• Transformers

– Translate between different data formats

– Move messages from one transport protocol to another

• Routers

– Message might travel through several channels on the way

to its ultimate receiver

– Completely decouples sender from receiver:

the sender is unaware of the channel the message is finally sent to

• Aggregators and Splitters

• Process Engines

• Channel Adapters

Are your services loosely coupled?

10

(C) 2008 Thilo Frotscher 19

• Remember the big knot of point-to-point connections?

A loosely coupled solution
Are your services loosely coupled?

External

System A

D
R
O
P
B
O
X

Application
A

FTP

DMZ

FTP

HTTP

External

System B

Application
C

Application

E

Application

D

Integration

Hub

Integration

Hub

Application

F

Application

G

Integration
Hub

Application
B

External

System A

D
R
O
P
B
O
X

Application
A

FTP

DMZ

FTP

HTTP

External

System B

Application
C

Application

E

Application

D

Integration

Hub

Integration

Hub

Application

F

Application

G

Integration
Hub

Application
B

External

System A

D
R
O
P
B
O
X

Application

A

DMZ

FTP

HTTP

External

System B

Application
C

Application

E

Process
Engine

Application

F

Application

G

Application

B

RouterT

T T

T

External

System A

D
R
O
P
B
O
X

Application
A

DMZ

FTP

HTTP

External

System B

Application

C

Application

E

Process

Engine

Application

F

Application

G

Application

B

Messaging System

(C) 2008 Thilo Frotscher 20

Message Bus

• Good solution for cases where multiple applications are

supposed to work together in a loosely coupled way

• Add / remove applications without affecting the others

• Canonical data model to reduce the number of transformers

• Shared set of shared interfaces / command command set

• Messaging infrastructure

• Adapters for standard technologies or packaged applications

Are your services loosely coupled?

11

(C) 2008 Thilo Frotscher 21

Enterprise Architecture with a Message Bus

External

System A

D
R
O
P
B
O
X

Application
A

DMZ

FTP

HTTP

External

System B

Application

C

Application

E

Process

Engine

Application

F

Application

G

Application

B

Message Bus

• The bus as a universal connector routes messages

to the underlying systems

Are your services loosely coupled?

T TT

T T

(C) 2008 Thilo Frotscher 22

Enterprise Service Bus

• Adding an abstraction layer around the idea of messaging

• No clear definition for the term “ESB”

• ESBs typically include
– multiple adapters for different transport protocols and standards

– standards-based adapters for integrating legacy apps (e.g. JCA)

– support for WS-* standards

– support for orchestration and/or choreography

– routing, security, validation, transformation

– monitoring facility

• Various commercial ESBs available

• Open Source ESBs include
– Mule

– Apache Synapse

– Apache ServiceMix

Are your services loosely coupled?

12

(C) 2008 Thilo Frotscher 23

Contracts and Interfaces

• Versioning is a common problem in software development

• What happens if an interface needs to be changed?

• What if we need to add operations or send more data?

• WSDLs and XML Schemas should ideally be backward-

and forward-compatible

• Introduce a versioning scheme for your organization

– Minor versions should be compatible

– Major versions can break compatibility

• Create extensible schemas

Are your services loosely coupled?

(C) 2008 Thilo Frotscher 24

Don’t make service interfaces too generic!

• This is a bad practice…

<wsdl:definitions ...>

<wsdl:types>

<xsd:schema ...>

<xsd:element name="message" type="xsd:string"/>

</xsd:schema>

</wsdl:types>

<wsdl:message name="processMessageRequest">

<wsdl:part name="input" element="tns:message"/>

</wsdl:message>

<wsdl:message name="processMessageResponse">

<wsdl:part name="output" element="tns:message"/>

</wsdl:message>

<wsdl:portType name="MyGenericPortType">

<wsdl:operation name="processMessage">

<wsdl:input message="tns:processMessageRequest"/>

<wsdl:output message="tns:processMessageResponse"/>

</wsdl:operation>

</wsdl:portType>

</wsdl:definitions>

Are your services loosely coupled?

13

(C) 2008 Thilo Frotscher 25

Summary

• So are your services loosely coupled? ☺

• Using Web service technology does not automatically

lead to loosely coupled systems!

• Web services can be used for both integration styles:

RPC and Messaging

• Always remember that loose coupling and asynchronous

communication makes your system more complex

– often a tighter coupling is fine (or good enough)

• Tightly coupled solutions are typically more efficient,

but also brittle and more vulnerable to change

• For enterprise architecture and enterprise integration

avoid a growing knot of point-to-point connections

Are your services loosely coupled?

(C) 2008 Thilo Frotscher 26

Thank you very much for your attention!

Web Services Training & Consulting

thilo@frotscher.com

http://www.frotscher.com

