
Building RESTful Services
with Erlang and Yaws
Steve Vinoski
Member of Technical Staff

Verivue

Westford, MA USA

http://steve.vinoski.net/

vinoski@ieee.org

http://steve.vinoski.net
http://steve.vinoski.net
mailto:vinoski@ieee.org
mailto:vinoski@ieee.org

Why Yaws? (“Yet Another Web Server”)

http://www.sics.se/~joe/apachevsyaws.html

Here we see Yaws handling 80000 concurrent
connections, but Apache dying at 4000

http://www.sics.se/~joe/apachevsyaws.html
http://www.sics.se/~joe/apachevsyaws.html

Erlang began life in 1986 for developing highly reliable
distributed concurrent systems

Developed at Ericsson for telecom equipment

Open sourced in 1998, it’s been used to develop
systems with guaranteed nine nines reliability (31.5ms
downtime per year)

Under active development, version R12B-2 came out in
April 2008

Yaws is Written in Erlang

Enabling highly reliable systems is a primary goal for
Erlang (designed for “concurrent programs that run
forever” — Joe Armstrong, creator of Erlang)

It encourages designs that accept that failure will occur
and must be dealt with

Processes can be arranged in distributed supervision
trees, supervisors watch and restart failed processes

Code can be loaded into running systems

The Open Telecom Platform (OTP) libraries provide
common application behaviors supporting reliability

Erlang Reliability

Erlang avoids shared state, uses message passing
instead

the type of message passing originally intended for
OO languages

very fast, asynchronous, same host or across hosts

Erlang variables cannot be re-assigned; they’re bound
once and that’s it, to avoid mutable state

No explicit code for concurrency guards, locks,
synchronization etc. required

Message Passing

Pattern Matching
In Erlang, X = 3 is a pattern matching operation

if X is unbound, it's bound to the value 3

if X is already bound, it's an error unless it's bound to
the value 3

avoids mutable state and the need to guard it

Pattern matching is a significant and important feature
of Erlang

used for assignment, checking for values, receiving
messages, function selection

Yet Another Web Server
(Yaws)

Yaws was written and is maintained by Claes "Klacke"
Wikström, and is open source available from http://
yaws.hyber.org/

Written in Erlang as an OTP application

Takes advantage of Erlang's concurrency and
distribution capabilities to provide significant scalability

Testimonials often state that Yaws handles on a single
host loads that other web servers need multiple hosts
to handle

http://yaws.hyber.org
http://yaws.hyber.org
http://yaws.hyber.org
http://yaws.hyber.org

Erlang Details

We don’t have enough time for an Erlang tutorial

Get Joe Armstrong's book Programming Erlang

very readable

both an introduction and a language reference

Lots of information at http://www.erlang.org/

erlang-questions mailing list (available from above link)

http://www.erlang.org/
http://www.erlang.org/

RESTful Design

Name your resources with URIs

For each resource, decide:

what each HTTP method does and what status
codes it returns

what media types to support

how each representation of the resource guides the
client through its application state

how to handle conditional GET (etags, last-modified)

REST Basics

The term “Representational State Transfer” was coined
by Roy T. Fielding in his Ph.D. thesis, published in
2000: “Architectural Styles and the Design of Network-
based Software Architectures”

REST is an architectural style that targets large-scale
distributed hypermedia systems

It imposes certain constraints to achieve desirable
properties for such systems

Desired System Properties

Performance, scalability, portability

Simplicity: simple systems are easier to build, maintain,
more likely to operate correctly

Visibility: monitoring, mediation

Modifiability: ease of changing, evolving, extending,
configuring, and reusing the system

Reliability: handling failure and partial failure, and
allowing for load balancing, failover, redundancy

Constraints Induce Desired
Properties

REST intentionally places constraints on the system to
induce these properties

In general, software architecture is about

imposing constraints and

choosing from the resulting trade-offs in order to
achieve desired properties

REST Constraints

Client-Server

Statelessness

Caching

Layered System

Uniform Interface

Code-on-demand

Uniform Interface Constraint

What: all servers present the same general interface to
clients

In HTTP, this interface comprises the protocol’s
verbs: GET, PUT, POST, DELETE

Why: important for implementation hiding, visibility of
interactions, intermediaries, scalability

This constraint induces several more constraints,
described later

HTTP Verbs are Methods

Method Purpose Idempotent?

GET Retrieve resource
state representation

Yes
(no side effects)

PUT Provide resource
state representation

Yes

POST Create or extend a
resource

No

DELETE Delete a resource Yes

Uniform Interface Benefits

Enables visibility into interactions

including caching, monitoring, mediation applicable
across all resources

Provides strong implementation hiding, independent
evolvability

Simplified overall architecture

Uniform Interface Sub-
Constraints

Resource identification via URIs

Resource manipulation through the exchange of
resource state representations

Self-describing messages with potentially multiple
representation formats

Hypermedia as the engine of application state (a.k.a.
HATEOAS, or hypermedia constraint)

Representations

Method payloads are representations of resource state

hence the name “Representational State Transfer”

REST separates methods and data formats

Fixed set of methods, many standardized data
formats, multiple formats possible per method per
resource

Media Types

Representation formats are identified using media
(MIME) types

These types are standardized/registered through the
IANA (http://www.iana.org/assignments/media-types/)

Allows reusable libraries and tools in a variety of
programming languages to handle various MIME types

http://www.iana.org/assignments/media-types/
http://www.iana.org/assignments/media-types/

Hypermedia Constraint

Resources keep resource state, clients keep
application state

Resources provide URIs in their state to guide clients
through the application state

Clients need “know” only a single URI to enter an
application, can get other needed URIs from resource
representations

For Example
Consider a bug-tracking system

HTML representations for interactive viewing,
additions, modifications

Excel or CSV representations for statistical tracking
by importing into other tools

XML (e.g. AtomPub) or JSON to allow integration
with other tools

Atom feeds for watching bug activity

Existing clients that understand these formats can
easily adapt to use them — serendipity

RESTful Design With Yaws

Design URIs for your resources

For each resource, decide:

what each HTTP method does and what status
codes it returns

what media types to support

how each representation of the resource guides the
client through its application state

how to handle conditional GET (etags, last-modified)

URI Design
URIs must be designed from an application
perspective, not from a server perspective

in the old days URIs corresponded to file pathnames
on the web server

that’s still possible, but RESTful services often don’t
deal with files at all

URIs name the resources the client will access and
manipulate

URIs collectively form an application state space the
client can navigate

URI Examples

Bugs for project "Phoenix" might be found here:

http://example.com/projects/Phoenix/bugs/

The specific bug numbered 12345 might be here:

http://example.com/projects/Phoenix/bugs/12345/

Bugs for user jsmith might be here:

http://example.com/projects/Phoenix/users/jsmith/bugs/

Representation Generation

Yaws provides three ways for your code to generate
resource representations:

.yaws pages

application modules (appmods)

Yaws applications (yapps)

.yaws Pages
Enclose a function named “out” taking an Arg (HTTP
request argument) within <erl></erl> tags in a file

in Erlang we refer to this function as out/1

function named “out” with arity 1 (i.e., 1 argument)

Give the file a “.yaws” extension

When the file is requested Yaws executes the out/1
function and replaces <erl>...</erl> with the output of the
function

Mainly useful for relatively static content

URIs are controlled by where .yaws file is placed relative to
the document root

Application Modules
(appmods)

Lets application code take control of URIs

An Erlang module exporting an out/1 function is
configured in the Yaws config file to correspond to a
URI path element

When Yaws sees a request for that path element, it
calls the out/1 function passing the HTTP request
details, then returns the result of the function

Such URIs need not correspond to file system artifacts

Yaws Applications (yapps)

Similar to appmods, but a yapp is a full Erlang/OTP
application

This means it can run an init function, can have state,
can support on-the-fly code changes, can be
controlled by a supervisor, etc.

Useful for talking to back-end services, e.g. maintaining
connections to the back-end

HTTP Request Details (#arg)

All out/1 functions receive an #arg record (basically a
tuple) containing details of the HTTP request for which
they’re being invoked

#arg provides details such as HTTP headers and
various forms of URI path information

For example, to get the request URI:

out(Arg) ->
 Uri = yaws_api:request_url(Arg),

URI-based Dispatching
Use Erlang’s pattern matching to dispatch to the right
function to handle a given URI

out(Arg) ->
 Uri = yaws_api:request_url(Arg),
 Path = string:tokens(Uri#url.path, "/"),
 out(Arg, Path).

out(Arg, ["projects", "Phoenix", "bugs"]) ->
 % handle the bugs URI here;

out(Arg, ["projects", "Phoenix", "bugs", Bug]) ->
 % handle bug number "Bug" here.

Handling HTTP Methods
Same pattern matching approach can be used to
dispatch on HTTP method

out(Arg) ->
 % get Uri and Path as in previous example
 Method = (Arg#arg.req)#http_request.method,
 out(Arg, Method, Path).
out(Arg, 'GET', ["projects", "Phoenix", "bugs"]) ->
 % return representation of bug list;
out(Arg, 'POST', ["projects", "Phoenix", "bugs"]) ->
 % add new bug to the list;
out(Arg, Method, ["projects", "Phoenix", "bugs"]) ->
 [{status, 405}]; % other methods not allowed

Same Again for MIME Types
Representation the client wants is in the Accept header

out(Arg) ->
 % get Uri, Path, Method as in previous examples
 Accept_hdr = (Arg#arg.headers)#headers.accept,
 out(Arg, Method, Accept_hdr, Path).
out(Arg, 'GET', "text/html", ["projects", "Phoenix", "bugs"]) ->
 % return HTML representation of bug list;
out(Arg, 'GET', "application/xml", ["projects", "Phoenix", "bugs"]) ->
 % return XML representation of bug list;
out(Arg, 'GET', Accept, ["projects", "Phoenix", "bugs"]) ->
 [{status, 406}]; % other representations not acceptable

Conditional GET Support
Whenever possible, design your RESTful service to
return Last-modified and/or Etag HTTP headers

allows clients to cache and do conditional GETs
based on whether the resource has changed since
they last retrieved it

if no change, server returns status 304 with no
payload — big scalability win

can be tricky to design this so that computing Etags
has reasonable cost

For More Information
RESTful Web Services teaches you everything
you need to know about developing using the
REST style

My InfoQ article “RESTful Services with Erlang and Yaws” (http://
www.infoq.com/articles/vinoski-erlang-rest)

My “Toward Integration” columns in IEEE Internet Computing (all
available from http://steve.vinoski.net/)

yaws.hyber.org and erlang.org

ErlyWeb (http://code.google.com/p/erlyweb/), a Yaws-based
framework for database-based web systems

http://www.infoq.com/articles/vinoski-erlang-rest
http://www.infoq.com/articles/vinoski-erlang-rest
http://www.infoq.com/articles/vinoski-erlang-rest
http://www.infoq.com/articles/vinoski-erlang-rest
http://steve.vinoski.net
http://steve.vinoski.net
http://code.google.com/p/erlyweb/
http://code.google.com/p/erlyweb/

