
Putting the "re"

into Architecture

Kevlin Henney
kevlin@curbralan.com

@KevlinHenney

No design system is or

should be perfect.

That which is overdesigned,

too highly specific, anticipates

outcome; the anticipation of

outcome guarantees, if not

failure, the absence of grace.

William Gibson
All Tomorrow's Parties

interface Iterator
{
 boolean set_to_first_element();
 boolean set_to_next_element();
 boolean set_to_next_nth_element(in unsigned long n) raises(…);
 boolean retrieve_element(out any element) raises(…);
 boolean retrieve_element_set_to_next(out any element, out boolean more) raises(…);
 boolean retrieve_next_n_elements(
 in unsigned long n, out AnySequence result, out boolean more) raises(…);
 boolean not_equal_retrieve_element_set_to_next(in Iterator test, out any element) raises(…);
 void remove_element() raises(…);
 boolean remove_element_set_to_next() raises(…);
 boolean remove_next_n_elements(in unsigned long n, out unsigned long actual_number) raises(…);
 boolean not_equal_remove_element_set_to_next(in Iterator test) raises(…);
 void replace_element(in any element) raises(…);
 boolean replace_element_set_to_next(in any element) raises(…);
 boolean replace_next_n_elements(
 in AnySequence elements, out unsigned long actual_number) raises(…);
 boolean not_equal_replace_element_set_to_next(in Iterator test, in any element) raises(…);
 boolean add_element_set_iterator(in any element) raises(…);
 boolean add_n_elements_set_iterator(
 in AnySequence elements, out unsigned long actual_number) raises(…);
 void invalidate();
 boolean is_valid();
 boolean is_in_between();
 boolean is_for(in Collection collector);
 boolean is_const();
 boolean is_equal(in Iterator test) raises(…);
 Iterator clone();
 void assign(in Iterator from_where) raises(…);
 void destroy();
};

interface BindingIterator
{
 boolean next_one(out Binding result);
 boolean next_n(in unsigned long how_many, out BindingList result);
 void destroy();
};

Public APIs, like diamonds,

are forever.

Joshua Bloch

"Bumper-Sticker API Design"
http://www.infoq.com/articles/API-Design-Joshua-Bloch

All architecture is design but not all

design is architecture. Architecture

represents the significant design

decisions that shape a system, where

significant is measured by cost of

change.

Grady Booch

Firmitas

Utilitas

Venustas

Uncertainty

Change

Learning

Satisfaction

Sufficiency

Sustainability

Sustainable development, which

implies meeting the needs of the

present without compromising the

ability of future generations to meet

their own needs.

Brundtland Report of the World Commission
on Environment and Development

refactoring

rewriting

recovery

retrospection

remembering re-evaluation

repair

re-engineering

reduction
reaction

reuse

revision

It is better to be roughly right

than precisely wrong.

John Maynard Keynes

Functional

Operational

Developmental

Prediction is very difficult Prediction is very difficult,

especially about the future.

Niels Bohr

Stewart Brand, How Buildings Learn
See also http://www.laputan.org/mud/

Rate of change

Thomas Ball and Stephen G Eick

"Software Visualization in the Large"




 



 

Scenario buffering by dot-voting possible changes and then readjusting dependencies

A

B

C

D

E

F











 



 







If all you could make was a long-term

argument for testing, you could forget
about it. Some people would do it out of a

sense of duty or because someone was

watching over their shoulder. As soon as

the attention wavered or the pressure

increased, no new tests would get written,

the tests that were written wouldn't be run,

and the whole thing would fall apart.

Kent Beck

Extreme Programming Explained

How much test coverage should your code have? 80%? 90%? If

you’ve been writing tests from the beginning of your project, you

probably have a percentage that hovers around 90%, but what

about the typical project? The project which was started years

ago, and contains hundreds of thousands of lines of code? Or

millions of lines of code? What can we expect from it?

One of the things that I know is that in these code bases, one

could spend one’s entire working life writing tests without doing

anything else. There’s simply that much untested code. [...]

Changes occur in clusters in applications. There’s some code

that you will simply never change and there’s other areas of
code which change quite often. The other day it occurred to me

that we could use that fact to arrive at a better metric, one that is

a bit less disheartening and also gives us a sense of our true

progress.

Michael Feathers, "A Coverage Metric That Matters"

http://blog.objectmentor.com/articles/2010/05/28/a-coverage-metric-that-matters

All of this has
happened before,
and it will
happen again.

The real problem with modular parts is that we

took a good idea — modularity — and mixed it

up with reuse. Modularity is about separation:

When we worry about a small set of related things,

we locate them in the same place. This is how

thousands of programmers can work on the same

source code and make progress. We get in

trouble when we try to use that small set of related

things in lots of places without preparing or

repairing them.

Richard Gabriel
"Mob Software: The Erotic Life of Code"
http://www.dreamsongs.com/MobSoftware.html

refactoring

rewriting

recovery

retrospection

remembering re-evaluation

repair

re-engineering

reduction
reaction

reuse

revision

