Putting the "re”
into Architecture

Kevlin Henney
kevlingcurbralan. com
@leviinfenney

2011 PREVIEW T

NewS

Roho!hcspmns
of Christm 15

science 1
;wlunuhu tors
tiiton

The roas! (uture

Victorian
Gozzled su
sequence my>
t <treme beel

Horrof lizards

punk Lego
.hu'smd

scret

Steam
Booze myths
pt Santass!
hells

‘)\‘(l
lingle
Electrnce 2|8

Plus much, much

No design system is or
should be perfect.

That which is overdesigned,
too highly specific, anticipates
ouicome; the anticipation of
outcome guarantees, if not
failure, the absence of grace.

William Gibson
All Tomorrow's Parties

interface Iterator

{

}s

boolean set to first element();
boolean set to next e1ement()
boolean set to next nth element(in unsigned long n) raises(..);
boolean retr1eve_e1ement(out any element) raises(..);
boolean retrieve element set to next(out any element, out boolean more) raises(..);
boolean retrieve next n elements(
in unsigned long n, out AnySequence result, out boolean more) raises(..);
boolean not _equal retrieve element set to next(1n Iterator test, out any element) raises(..);
void remove e1ement() raises(.);
boolean remove element set to next() raises(.);
boolean remove next n e]ements(1n unsigned long n, out unsigned long actual number) raises(..);
boolean not equa] remove element set to next(in Iterator test) raises(.);
void rep]ace_e]ement(1n any element) raises(..);
boolean replace element set to next(in any element) raises(.);
boolean replace next n_elements(
in AnySequence elements, out unsigned long actual number) raises(..);
boolean not_equal replace element set to next(in Iterator test, in any element) raises(.);
boolean add element set 1terator(1n any element) raises(.);
boolean add n elements set 1terator(
in AnySequence elements, out unsigned long actual _number) raises(..);
void invalidate():
boolean is valid();
boolean is_in_between();
boolean is_for(in Collection collector);
boolean is_const();
boolean is_equal(in Iterator test) raises(.);
Iterator clone():
void assign(in Iterator from where) raises(.);
void destroy();

interface BindingIterator

{
boolean next one(out Binding result);
boolean next n(in unsigned Tong how many, out BindingList result);
void destroy();

}s

Public APIs, like diamonds,
are forever.

Joshua Bloch
"Bumper-Sticker APl Design”

http://www.infoq.com/articles/API-Design-Joshua-Bloch

All architecture is design but not all
design is architecture. Architecture
represents the significant design
decisions that shape a system, where
significant is measured by cost of
change.

Grady Booch

Firmitas
Utilitas

Venustas

Uncertainty
Change

Learning

Satisfaction
sufficiency

Sustainability

Sustainable development, which
implies meeting the needs of the
present without compromising the
ability of future generations to meet
their own needs.

Brundtland Report of the World Commission
on Environment and Development

. repair
refactoring P

re-evaluation remembering

revision s !
re-engineering

rewriting

reduction retrospection

recovery

5 108

AR R

= Twitter / kcpeppe: @Kevl... = |\ ok
pepp

€« > C N http.//twitter.com/kcpeppe/status/ 15473004648

- @KevlinHenney functionality is an asset,
- code s a liability

8:14 AM Jun 5th via Twidget Reply Retweet

kcpeppe

© 2010 Twitter AboutUs Contact Blog 5Status Goodies APl Business Help Jobs Terms Privacy

It is beiter to be roughly right
than precisely wrong.

John Maynard Keynes

Functional

!

Operational ==

Developmental

; S =t
on \
— — (>

2

S
T ————

4
Cd oo s
Paint ou M
*9 ‘! 2.
i et
Suggeshion R (v

-

v : | ‘o - ol
s S ladad,
bee %

design f N e e Unid / -
OP“";‘J L% 7 . (/.‘," W“‘u

No cont® « Wi Onennge
apeW i art Fock Péerge 04
: foed 'ﬂr . &’1 'd
rc'::'o’r-u" : : S ~t [
aces '. .
. / \

Bl Asyshes *' g

out

"h/y »

ok, ¢ Coupnd 3 ¥ " £
e H‘, w e TG . g e Afe furyes

A design B : = - 5 4 il ole regiession
. < S U n ysat s bests

Prediction is very difficult,
especially about the future.

Niels Bohr

LEARN

‘re built

SIFF
SPACE LAV
SERVICES
SKIN
STRUCTURE
SITE

Stewart Brand, How Buildings Learn
See also http://www.laputan.org/mud/

| 4

Rate of change

=] s5f

File Statistics Yiew Optiems Help

(v

At TR

nie3d.e
TielE e

7 §
E &
= =

fileX5.c
-

riedl e

NiluJE.c

i1 c, fine <08 of 634

LR T

PS5 GET_DAT | pehiat _olr J}

Filledk o

i G DL Inforaation

£
7

=
=

dd
1

_\
¥
5
)

F
13
3

Ii‘
&

¥
2
L]

e Tt A et e !

_l
i3
=
o

Ig
n
IE

Hibie 10
==

stals b FX
I ——
hnes 1 SESGAG2ES5205

it nrd Tty
|

Thomas Ball and Stephen G Eick
"Software Visualization in the Large"

Scenario buffering by dot-voting possible changes and then readjusting dependencies

<>

EUGEAFFORT

If all you could make was a long-term
argument for testing, you could forget
about it. Some people would do it out of a
sense of duty or because someone was
watching over their shoulder. As soon as
the attention wavered or the pressure
increased, no new tests would get written,
the tests that were written wouldn't be run,
and the whole thing would fall apart.

Kent Beck
Extreme Programming Explained

How much test coverage should your code have? 80%? 90%? If
you've been writing tests from the beginning of your project, you
probably have a percentage that hovers around 90%, but what
about the typical project? The project which was started years
ago, and contains hundreds of thousands of lines of code? Or
millions of lines of code? What can we expect from it?

One of the things that | know is that in these code bases, one
could spend one’s entire working life writing tests without doing
anything else. There’s simply that much untested code. [...]

Changes occur in clusters in applications. There's some code
that you will simply never change and there’s other areas of
code which change quite often. The other day it occurred to me
that we could use that fact to arrive at a better metric, one that is
a bit less disheartening and also gives us a sense of our true
progress.

Michael Feathers, "A Coverage Metric That Matters'
http://blog.objectmentor.com/articles/2010/05/28/a-coverage-metric-that-matters

All of this has

happened before,
and it will
happen again.

A Pattern Language

Towns - Buildings - Construction

Christopher Alexander
Sara Ishikawa - Murray Silverstein

Max Jacobson - Ingrid Fiksdahl-King
Shlomo Angel

S
s ’eJ' }-a- -"l'AS?-

;
JOES "Am K 3
A i
5 =
e TN P .

The real problem with modular parts is that we
took a good idea — modularity — and mixed it
up with reuse. Modularity is about separation:
When we worry about a small set of related things,
we locate them in the same place. This is how
thousands of programmers can work on the same
source code and make progress. We getin
trouble when we try to use that small set of related
things in lots of places without preparing or
repairing them.

Richard Gabiriel

"Mob Software: The Erofic Life of Code"
http://www.dreamsongs.com/MobSoftware.html

. repair
refactoring P

re-evaluation remembering

revision s !
re-engineering

rewriting

reduction retrospection

recovery

