
Unifying Front Office and Risk Analytics
qCon London 2011

Friday, 11 March, 2011

Kirk Wylie - CEO, CTO Jim Moores - Head of
Platform Development

Financial Analytics
Computational
Analytics
Mathematical calculations
key to computational
finance

- Curves (Yield, Credit, etc.)
- Greeks/Sensitivities
- VaR/cVaR
- Portfolio Performance

Data Analytics
Analysis of large-scale
data sets

- Tick-stream analysis
- Fraud detection
- Customer profiling
- Analysis of

Computational Analytics

Focus of Talk

Calculation Lifecycle

Tr
an

si
en

ce

Complexity

10-years+ Retention

Throw-Away Immediately

Minutes

Hours

Trivial Ghastly

Ex
ce

l W
or

ks
he

et
s

Fr
on

t-
O

ffi
ce

Tr
ad

in
g

Sy
st

em
s

Ba
tc

h/
O

ve
rn

ig
ht

Traders Risk Managers Board Regulators

How their
positions

reaction to
market
moves

How market
moves

impact the
firm

Ensure
trading
satisfies

shareholder
needs

Legal and
economy-

wide
oversightCo

nc
er

ns

Independent Systems

Slow Regulatory
Response

Duplication of
Effort Can’t Reconcile

Can’t Get Results
Fast Enough

What Do We Need?
• A software stack

• Capable of handling all calculation requirements
• From ad-hoc/one-off to the largest overnight batches
• From trivial calculations to large-scale simulations
• Speed for traders, sophistication for risk managers

• With a modern distributed architecture
• All calculations server side
• Support for user tools that end users want to use

• Designed for integration
• Work with what’s already on the ground
• Use as the basis for complex applications

Why Don’t We Have It?
• Existing Vendors Won’t Build It

• Their programmers aren’t good enough
• Their whole business model is based around lock-in

• Time/Resource Constraints
• Requirements go far beyond one single project’s needs

• Internal Costing Silos
• Multiple desks and risk jointly paying for this type of development? ROFL

• We Need Source Code
• Complex integration requires it
• SLAs don’t help you when the system goes down for real
• How do you know what’s under the hood?

OpenGamma Platform
• Single solution for all analytics applications

• Live trading applications
• Ad-Hoc Pre-Trade analytics
• Near-Real-Time risk management
• Batch/Overnight risk management

• Designed for integration
• Leverage proprietary in-house systems
• Integrate with existing vendor solutions
• White-box as part of a comprehensive offering

• Comprehensive Solution
• Everything for a comprehensive risk and analytics platform for trading
• Scales from individual trader to enterprise-wide use

• Asset-Class Neutral

Just How Open?
• Core platform released under APLv2

• Public repository on GitHub
• Full releases downloadable with/without libraries and source

• JIRA open to the world

• Documentation open to the world

• Expected first Open Source release April/May 2011

“How Will You Make Money?”
• Support Contract

• Make your procurement department happy
• Make your corporate info-sec department happy

• Commercial Components
• Integrations with proprietary systems with trade secret APIs
• Currently supported: Bloomberg (SAPI/Terminal), Reuters (RMDS), ACTIV, Excel
• You’ll still get the source code for these

• Consulting Services
• Access to the original authors
• Proactive management and support

• Pre-Packaged Versions
• Incredibly tight integration with other vendor systems

OpenGamma Platform
!"#$%&'()*+,-.

!"#$%&'()*+,-.

!"#$%&'()*+,-.

/#,#0#"-123+-

42",526%2
$#,#

)-73"%,*
$#,#

83+,2.#996%7#,%2&
:9-&;#..#

;<=

>-92",%&'
,226+

?%+,2"%7#6@
+,#,%7($#,#

:9-&;#..#

6%A-($#,#

!%7B$#,#C#+-

D622.C-"'
>-3,-"+EF71#&'-

5--$

G%-0.#&#'-"82.93,-
&2$-+

82&5%'3"#,%2&

?%+,2"%7#6
#*+%+

H*,%7+
%&,-"5#7-

:9-&;#..#

#*,%7+(-&'%&-

D-+92B-

83+,2.-"
#*,%7+(
6%C"#"*:9-&;#..#

#*,%7+(
6%C"#"*

View Processing Engine
!"#$%#&"'"(")'

!"#$*)+,"-#.

/)0"(")'
%1(1

2#*3."(4
%1(1

56#*3().

71.8#(
%1(1

9,#':1++1

#';"'#

<1-*&1.+

56#*3(")'=,-1'

>)?0

/.#0#'(1(")'

-14#.

@'1-4("*0
-"?.1.4

!1-3#0

Key Features
• Unified Analytics Calculation Infrastructure

• Ad-Hoc, Near-Real-Time/Streaming and Batch in one architecture
• Re-use all integration with proprietary modules across all projects

• Radically Open Architecture
• Every component can be replaced at customer site
• Every component can be used independently
• Built with the needs of Tier-1 Institutions in mind

• Modern, Distributed Architecture
• RESTful endpoints to all services
• MOM-based data distribution possible for all connections
• Web-Scale techniques used throughout system
• Components configurable through Dependency Injection

• Source Code For All Modules At Your Fingertips

Key Platform Components
• OpenGamma-Live Data

• Market Data Management solution

• OpenGamma Calculation Engine
• Dependency Graph approach to calculations
• Whole system operates in metadata

• Rich Data Management
• Time-Variant Fact Data
• Data Composition

• Client Management Facilities

OpenGamma-Live Data
• Market Data Abstraction

• Write applications (or plug into OpenGamma) and have a consistent view no
matter what underlying data source

• Market Data Aggregation
• Combine Reuters, Bloomberg, IDC, ACTIV, quote-based, bespoke feeds in one

consistent infrastructure

• Market Data Transformation
• Field name/identifier normalization (e.g. bid vs. BID_PRICE, RIC vs. BUID)
• Value transformation (price/rate, pounds/pence)

• Shared Services
• Last Known Value Caching
• Entitlement Checking & Integration
• Tick storage/replay

Declarative Dependency Graph
• End-Users Specify Desired Results

• “Fair Value”, “Delta”, “Yield Curve Sensitivities”, “hVaR”
• Scenarios to modify results: flat-at-market, fixed/% bumps, curve shift

• OpenGamma Builds Dependency Graph
• Each sub-calculation is a node in the graph
• Share interim calculations between nodes

• Dependency Graph Used For Execution
• Automatic job parallelism and distribution
• Minimal recalculation on streaming results

• Dependency Graph Allows “Explain Value” Functionality

• Same system for ad-hoc, live greeks/risk, and batch risk

Metadata Basis
• OpenGamma Engine doesn’t interpret

security or analytic definitions
• Can support new analytic measures and

securities without vendor support
• Can add support for new security types and

analytic models at runtime

• Analytic functions have control over
inputs/outputs

• Can operate on new data types and structures
without platform support

• OpenGamma analytics are implemented
as a plugin

• High level of confidence any customer’s
analytics library can be integrated

public interface Security extends UniqueIdentifiable {

 UniqueIdentifier getUniqueId();

 String getName();

 IdentifierBundle getIdentifiers();

 String getSecurityType();
}

public class ComputedValue implements Serializable {

 private final ValueSpecification _specification;

 private final Object _value;

 public ValueSpecification getSpecification() {
 return _specification;
 }

 public Object getValue() {
 return _value;
 }
 // SNIP -- Constructors, .equals(), .hashCode(), etc.
}

Time-Variant Fact Data
• Applies only to data in OpenGamma’s database schemas

• Fact-based data
• Security Definitions, Positions, Portfolios, Time Series Points

• Store all data on two time dimensions:
• Effective Timestamp: “At what point does this data apply”
• Correction Timestamp: “At what point did I observe/change that value”

• Designed for batch risk restatement
• Able to reproduce any metric as of any time in the past

• Example
• Monday book a $100MM swap trade
• Tuesday correct to €100MM
• Wednesday correct to €200MM

Data Composition
• All data able to come from multiple sources

• Single namespace and identifier resolution rules
• RDBMS, NoSQL, Files, In-Memory
• Example: Trading system API, OpenGamma RDBMS, and In-Memory all at once
• Predictable, easy to implement new source

public interface SecuritySource {
 Security getSecurity(UniqueIdentifier uid);

 Collection<Security> getSecurities(IdentifierBundle bundle);

 Security getSecurity(IdentifierBundle bundle);
}

public interface PositionSource {

 Portfolio getPortfolio(UniqueIdentifier uid);

 PortfolioNode getPortfolioNode(UniqueIdentifier uid);

 Position getPosition(UniqueIdentifier uid);

 Trade getTrade(UniqueIdentifier uid);
}

public interface RegionSource {

 Region getRegion(UniqueIdentifier uid);

 Region getHighestLevelRegion(Identifier regionId);

 Region getHighestLevelRegion(IdentifierBundle regionIdentifiers);
}

public interface ExchangeSource {
 Exchange getExchange(UniqueIdentifier uid);

 Exchange getSingleExchange(Identifier identifier);

 Exchange getSingleExchange(IdentifierBundle identifierBundle);

}

Client Management Facilities
• View calculation proceeds based on rules

• One-off as results requested (for ad-hoc calculations)
• As fast as data available (near-real-time streaming)
• At-most-as-fast, at-least-as-fast
• On set schedules

• Clients separated from actual calculations
• Each actual/remote client separate from each other
• Allows advanced functionality like client pause/restart, separate delivery

schedules, different resolution of results

• Results can be delivered to automatic systems
• View Processor chaining
• MOM-based broadcast

Technology Specifics
• Distributed architecture

• Fudge for meta-object definitions, JSON, XML
• RESTful HTTP, JMS, AMQP, pure sockets

• Pure Open-Source Reference Platform
• Java 6, PostgreSQL, LucidDB, ActiveMQ, RabbitMQ, HornetQ, MongoDB

• Designed for infrastructure portability
• Vertica, Oracle, Sybase, SonicMQ, Solace, Tervela

• Comprehensive UI possibilities
• HTML5/CSS3 Web GUI, tight Excel integration
• R integration Q2/Q3 2011
• Java/C# client libraries for custom GUI work

• Deployment Options
• 100% on-site, 100% off-site, split architecture all possible

Demonstration

