
1

QCon London, March 2011

Case Study:
Large-scale pure OO at the Irish Government

Richard Pawson – rpawson nakedobjects.net
Naked Objects Group
www.nakedobjects.net

@

http://www.nakedobjects.net/

2

What makes this an interesting story:

• Repeated successful delivery of very large scale projects in the public sector

•
• Extraordinary business domain complexity

•
• Possibly the purest example of OO design for a large-scale transactional business

application, worldwide

•
• One of the largest-scale applications of agile-development within the public sector,

worldwide

•
• A rich user interface, to a core transactional business system

•
• First, and still the largest, deployment of the naked objects pattern

The Department of Social Welfare

• As part of a huge Service Delivery Modernisation (SDM) programme,
initiated 10 years ago, the Department recognised the need to replace
its aging mainframe-based benefit administration systems

•
• The primary requirement: ‘agility’

– Technical agility
– Strategic business agility
– Operational business agility
–

• The chosen solution:
– An agile architecture
– Agile development methodology
– A Microsoft-based platform

The Department of Social Welfare, Community, and
Family Affairs
The Department of Social Welfare, Community, and
Family Affairs
The Department of Social Welfare, Community, and
Family Affairs
The Department of Social Welfare, Community, and
Family Affairs Protection
The Department of Social Welfare, Community, and
Family Affairs Protection (www.welfare.ie)

Agile design principle 1:
Domain-driven design

• Aim: Define an ubiquitous language (the ‘BOM’) - a common
language between business stakeholders and software
developers

• Rationale: It represents the (slowly-changing) essence of the
business, rather than the (rapidly-changing) current practices

• New requirements are expressed in BOM terms
– Violation: Process-driven design
– Violation: Screen-driven design

• Evidence: Business stakeholders are involved directly in the BOM
design

• Evidence: Almost 100% the BOM can be understood by the
business

• Constraint: BOM should be agnostic of the technical platform
– but is fundamentally represented in code

5

Partial extract of .NET classes
from the Common BOM

Customer
Maintenance
Abstract Customer
- Customer
- Customer Awaiting PPSN
Alternate ID
Basis Match
Customer Details Form
Customer Email Address
Life Event
- Birth
- Death
- Marriage
Abstract Name
- Name
- Usage Name
Previous Claim
Relationship
- Primary Relationship
- Reciprocal Relationship
Telephone Number

Address Maintenance
Abstract Address
- CRS Address
 - Household Address
 - Correspondence Address
 - Previous Address
- Generic Foreign Address
- Irish Address
- UK Address
- USA Address

Work Management
Abstract Case Content
- Case Note
- Imported File
- Imported Mail
- Scanned Document
Bring Back Details
Customer Case
- Maintenance Case
- Scheme Case

Quality Control
Abstract Recorded Action
- Decision
- Recorded Action
 - Customer Case _
 Recorded Action
Recorded Action Type

Organisational
Maintenance
Actor
- Officer
- Org Unit
Actor Email Address
CRS User
Grade
Local Office

Customer Communication
Address
- Email Address
- Postal Address
Communication
- Form Communication
 - Customer Communication
 - Scheme Communication
- Letter Communication
Communication Template
- Form Communication Template
- Letter Communication Template
Communication Template Translation
- Form Communication Template Translation
- Letter Communication Template
Translation
Postal Address Line

Paying Benefits
Book
Book Renewal Cycle
Overlap
Overpayment
Payment
- Cheque Payment
- EFT Payment
- EIT Payment
- PPO Payment Voucher
Payment Statement

Payment Method
Maintenance
Agent
- Individual Agent
- Institutional Agent
Bank
- Credit Union
- Foreign Bank Details
- Irish Bank
- UK Bank
Payment Method
- Cheque Payment Method
- EFT Payment Method
- Post Office Payment Method
 - PPO Payment Method
 - EIT Payment Method
Post Office

Scheme administration
Benefit
- Component
 - Exception Payment Generator
 - Split Payment Generator For Customer
 - Split Payment Generator For Other Party
 - Overlap Correction
- Scheme
Entitlement
Entitlement Period
Hypothetical Entitlement
Means Element
- Capital Means
- Weekly Income Means
Means Assessment
Rate Table

Agile design principle 2:
Behaviourally-rich objects

• Aim: 100% of business logic encapsulated as methods on (persistent) domain entities
– Violation: Introduction of ‘view’, ‘controller’, or ‘process’ objects
– Violation: Decomposition of core business functionality into services

• Rationale:
– Strategic business agility
– Very high-reuse between different applications (from polymorphism)

• Rarely, business logic may be encapsulated on non-persistent ‘transient’ objects
– Example: (Contribution History) TakeOnSheet

• The BOM makes extensive use of inheritance and polymorphism
– Violation: dictating BOM design by the convenience of database representation

• Services play a distinct, and secondary, role to domain objects
– As a bridge to other domains, such as technical domains or external applications
– To provide logic that cannot be associated with an object, such as the start points

featured on the user’s desktop
– To provide logic needed by multiple objects, that have no common superclass

Agile design principle 3:
The naked objects pattern

• All user interfaces (UI) for internal use are a direct
reflection of the BOM

• Rationale:
– eliminates the need to develop/maintain the ‘view’

and ‘controller’ layers
– easier to adhere to the principles of DDD
– facilitates a very pure style of OO
– facilitates agile development practices
– creates a more empowering style of UI

•Violation: Introduction of any custom UI code
 (for an internal facing application)

•Violation: Code Generation

Agile design principle 4:
No such thing as an ‘application’

• All Officers are logging on to a single system, with role-based
permissions for accessing object types, properties and actions

– Violation: a separate log-on from the generic SDM log-
on

• The separation of Common and Specific BOMs is for project
management and testing purposes
– The specific BOMs do not constitute ‘applications’

• Requirements for new specific objects, should, wherever possible, be
implemented in abstract form, in the Common BOM

The technical platform

• Domain objects written as POCO .NET classes

• A framework to implement the Naked Objects Pattern
– Phase 1: a bespoke framework written by Fujitsu
– Phase 2: replaced by a port of an early version of (Java) Naked

Objects (now Apache Isis incubator.apache.org/isis/)
– Phase 4: will move to Naked Objects WPF & Naked Objects MVC

• Bespoke automated test framework (built on top of NUnit)
– eXecutable Application Tests (XAT) and System Tests (XST)

• Persistence on RDBMS
– Phase 1: Data Access Objects
– Phase 2 & 3: Custom ORM
– Phase 4: Entity Framework

• BizTalk for Publish & Subscribe

• Open source components: Spring.NET, CruiseControl.NET, Apache FOP …

http://incubator.apache.org/isis/index.html
http://incubator.apache.org/isis/index.html
http://incubator.apache.org/isis/index.html

10

Extraordinary hurdles

• Procurement constraints

• Technical constraints
– bridging SQLServer and Oracle RDB

• Immaturity of the technologies (at the time)
– Naked Objects framework
– Visual Studio (in fact, the whole .NET dev. Environment!)
– Lack of a viable ORM

• Business complexity

Danger zone

Glamour zone

Comfort zone

Two (out of several) dimensions of systems
development projects

12

Domain Model
complexity

UI Richness

Deep-pockets
zoneDemo

zone

Biggest surprises (positive)

• That the Department went ahead with the idea at all

• That all (but one) of the projects has been a complete success

• Performance (until very recently)

• Business willing to engage in object modelling
– and willingness to lose the process focus

• ‘Extreme re-use’

• Extensibility in unforeseen ways

• User reaction
– though not 100%

Metaphor: The Incredible Machine

15

User reaction to the ‘problem-solving’ user interface
has been positive

“The new system permits me to better deal
with the needs of individual customers”

“The new system contributes positively
to my sense of job satisfaction”

Biggest surprises (negative)

• How poor the Microsoft tools and frameworks were in 2004
– though much improved since

• Exposing the range of developer skills and motivation

• Poor fit with traditional (development) job roles
– Testers, BAs, Batch, DBAs

• The single project failure

What could have been done better?

• Too much coupling in the BOM

• On-going investment in the infrastructure

• Batch processing

• Insufficiently aggressive about the 80:20 rule

• Not adopting progressive roll-out

• A more imaginative procurement process

•

Where next?

• Continued aggressive development of new functionality due to:
– Heavy business pressures from the economy
– Massive increase in role & responsibility of DSP
– Pressure to port the remaining mainframe systems

• Migration to the second generation platform
– New Technical Architecture

– Naked Objects MVC (based on ASP.NET MVC)
– Entity Framework
– WIF security

– Porting and refactoring of the BOM using the ‘cluster’ pattern

The cluster model
Example: Payments cluster (partial view)

Public
API

Private
implementation

Payment
cluster

A cluster may depend on other clusters where this
reflects a clear business dependency

Communication

Postal address

Payment Method

Payment

Periodic Entitlement

Name

API

Implementation

A cluster is defined by an API project

1. API is defined by .NET Interfaces, of three broad kinds:
– A ‘Role interface’ is intended to be implemented by objects in other clusters e.g.

IPayableItem, ICorrespondenceHolder
– A ‘Result interface’ provides a restricted view of a class defined inside the cluster e.g.

ICustomer, ICountry
– A ‘Service interface’ provides a programmatic view of a service e.g.

ICustomerRepository

2. API may also contain static (shared) functionality e.g. Enums, Modules

3. API must not contain instantiable classes
– Because all knowledge of persistence resides inside the cluster

4. API is pure POCO
– no references to Naked Objects Framework (though App Lib is allowed for

annotations)

5. API project may reference other API projects, where this reflects a
business reality

– PaymentAPI.IPayableParty inherits
CommunicationAPI.ICommunicableParty

–

–

21

The ‘cluster model’: How
A cluster is defined by an API project

1. API is defined by .NET Interfaces, of three broad kinds:
– A ‘Role interface’ is intended to be implemented by objects in other clusters e.g.

IPayableItem, ICorrespondenceHolder
– A ‘Result interface’ provides a restricted view of a class defined inside the cluster e.g.

ICustomer, ICountry
– A ‘Service interface’ provides a programmatic view of a service e.g.

ICustomerRepository

2. API may also contain static (shared) functionality e.g. Enums, Modules

3. API must not contain instantiable classes
– Because all knowledge of persistence resides inside the cluster

4. API is pure POCO
– no references to Naked Objects Framework (though App Lib is allowed for

annotations)

5. API project may reference other API projects, where this reflects a
business reality

– PaymentAPI.IPayableParty inherits
CommunicationAPI.ICommunicableParty

–

–

22

New application classes may delegate most of their
functionality to these injected services

The list of implemented role
interfaces.

(Provides a readable summary of the
object’s intent.)

Properties (hidden from user)
into which required services
are injected.

Lightweight methods required
by the implementation of
various interfaces.

Some additional subtleties of the Cluster Model

• Yes, the cluster model does bear some resemblance to an SOA, but
– The API is specified as object types (interfaces) which define

the business functionality that they provide, not just their
structure

• All relationships across clusters must be defined as ‘interface
associations’ (a.k.a. ‘any’ or ‘polymorphic’ associations)
– DBAs won’t like this
– Microsoft Entity Framework does not support this yet!
– Naked Objects supplies its own implementation
– One huge upside is that clusters can be moved between

databases with zero impact on the code

• Cluster functionality my be invoked by means of:
– Dependency injection of a cluster service e.g.

IPaymentService
– Aspects
– Naked Objects: ‘Contributed Actions’

	Slide2
	Slide3
	Slide4
	Slide11
	Slide17
	Slide12
	Slide13
	Slide14
	Slide10
	Slide16
	Slide9
	Slide18
	Slide7
	Slide25
	Slide15
	Slide8
	Slide6
	Slide5
	Slide19
	Slide22
	Slide26
	Slide27
	Slide23
	Slide24

