
Introduction

Rupert Smith is a Java programmer, who started out tinkering at the low-level end of things;
Assembler and C. He first worked on messaging software as a contributor to the Apache Qpid
implementation of AMQP. He is currently working for Rapid Addition which, with its low-latency
focus, is a fertile place to mix ideas from his background. He studied Computer Science at
Cambridge University and maintains an interest in compiler development, particularly for logic
based languages. His main hobbies are camping and nature conservation.

Kevin has over 20 year’s experience of working within financial markets technology including
Robert Fleming, LSE, Salomon Brothers and HSBC.

Kevin helped to establish the FIX protocol in Europe. His first FIX engine was given away as a
learning aid that helped many enterprises further their knowledge of FIX. Kevin is the designer of
the FIX Repository for FIX Protocol Limited, Co-chairs the Global Technical Committee, and is an
active member of the Global Steering Committee. He is the lead Expert Group member, UK
Government Foresight Committee looking at the Future of Computer Based Trading.

Introduction

Rationale
Origin
Road to Gen Zero
Details

Box Trade - $100

USD GBP EUR

100
1

USD/EUR = 1.3158

EUR/GBP = 1.1875

USD/GBP = 1.5625

Ignoring spreads, commissions
and transaction costs

Box Trade - $100

USD GBP EUR

100
1

100
2 76

2

USD/EUR = 1.3158

EUR/GBP = 1.1875

USD/GBP = 1.5625

Box Trade - $100

USD GBP EUR

100
1

100
2 76

2
76

3
64

3

USD/EUR = 1.3158

EUR/GBP = 1.1875

USD/GBP = 1.5625

Box Trade - $100

USD GBP EUR

100
1

100
2 76

2
76

3
64

3
64

4

101
4

USD/EUR = 1.3158

EUR/GBP = 1.1875

USD/GBP = 1.5625

Profit = $1

Origin

Wrote a repository driven engine initially used with BizTalk
What is the repository?
Looked a code generation to improve
Already one of the fastest engines around
GC identified as major hurdle
.Net initiative to remove

Latency vs Load and Throughput vs Load

Latency Throughput

max throughput

min latency

saturation point saturation pointLoad Load

If you want good latency,
 you must have excess capacity.

Distribution of Latencies

100%

0%

baseline

Distribution Density Function

Cumulative Distribution Function

Lower the baseline.
Tighten the tail.

The 'Algo' Trading Test

Algo box

MD box

Exchg box

TipOff box

Tap

Switch

Timetamp first bit (+ constant delay)

Latency = T2 - T1
 = (T2 + C) - (T1 + C)

fix0_n Market Data and Executions
fix1_n Orders

Why?

Order and Exec Report can be matched
up by Client Order Id.
Market Data and Order have no built in
correlation.

1001.000 -> BUY 1
1002.000 -> BUY 2
...
1001.001
...
1001.005

2001.000 -> BUY 1
...

5 'stocks'
5 ticks/cycle

End to End Time Budget

NIC

NIC

NIC

NIC
D

M
A

Interrupt

T
C

P

Se
ria

liz
e

Deserialize

Se
ria

liz
e

DeserializeEth

Eth

Eth

Eth
D

M
A

D
M

A

D
M

A

T
C

P

T
C

P

T
C

P

2.5 2.5 1 14 2 5 3 2 1 2.5

2.5 2.5 1 1 5 3 1 1 2.5

1G on 2.8 GHz Nehalem, built in NIC

1G on 2.8 GHz, SolarFlare and 'open onload'

Jitter and Garbage Free Code

http://tinyurl.com/69m7xz

JavaWorld article
on Javolution

Compute FFT of Complex
numbers. Requires lot of
intermediate values; a
source of garbage.

Genzero Rules:

1) Actively manage any resources used in
program, object pools etc
2) Start up – GC permitted
3) No GC in steady state phase of program

FIX is ASCII

8=FIX.4.2 | 9=192 | 35=X | 49=FEED | 56=ALGO | 34=7 | 52=20120308-00:51:52.303 | 262=subscribe:A000 | 268=2
| 279=1 | 269=1 | 278=23 | 55=A000 | 270=0.001 | 271=1000 | 346=1 | 290=1 | 279=1 | 269=0 | 278=24 | 55=A000
| 270=0.101 | 271=1000 | 346=1 | 290=1 | 10=186 |

Subtract ASCII '0'
Multiply by 10

Divide by 10, take modulo.
Add ASCII '0'

Avoid using java.lang.String for string processing.

Zero Copy I/O, how real is it?

JVM

NIC NIC

User

Kernel

read() write()readv() writev()

Direct Buffer

Heap Buffer

TCP Packets

Socket Buffer

There may be copying.

Access to byte[] vs getByte()/setByte().

Java nio provides API for zero-copy vectored I/O.

SolarFlare Effect of 'onload' (polling)

RA Cheetah vs QuickFixJ

GenZero programming differences:

Experience tells on calls to avoid etc
More tests
Longer testing period, effectively
soak tests, a 30 second test will not
show up GC that happens every 120

Intel Testing, 10G SolarFlare and Dell Everest

FIX Engine Overview
TagValueVisitor MessageBuilder

getBuffer()

releaseBuffer() getBuffer()

releaseBuffer()

ReceiveHandler SendHandler

SerializerDeserializer

SocketsHandler

FIX Engine - With Internal Queues
TagValueVisitor MessageBuilder

ReceiveHandler SendHandler

Deserializer Serializer

SocketsHandler

allocate seq no.
allocate buffer position

chunk messages by length
allocate local seq no.

FIX Engine - With Hardware Implementation
TagValueVisitor MessageBuilder

ReceiveHandler SendHandler

DMA DMA

FPGA Card

DMA Engine

FIX Core

TCP Stack

