—) >Real Logic

ACCELERATING SOFTWARE

Event Sourced Architectures

for
High Availability

Martin Thompson - @m|pt777









Our Disaster Recovery Plan
Goes Something Like This...













What Is “High Availability” ?

* Availability refers to ability of the user community to
access a system — not about Uptime!

- By “High” availability we generally mean the system is
always there when we need it

* The 9’s are the typical way this is measured
> 99.999%? When did the issue occur?
- MTBF — Mean Time Between Failures

- MTTR — Mean Time To Recover !!!
 Bathtub curve for Failure Rates
- System pauses (e.g. Garbage Collection)

« What about hot upgrade?



The “Truth” About Production Outages

* Admin “Cock-ups”
* Clustering Software
- Hardware Failures

Software Bugs

p errs
again,

any new hardware or s a
nstallation, ask your hardware or s
d u might need.

and then

100

r system adninistrator or

BY MY CALCULATIONS

This problem doesn't even exsist!!!



High Availability: The Good, The Bad, The Ugly!

 The Good: Queries
> Go parallel with lots of replicas
 The Bad: Updates
> Some problems cannot be made parallel but some can
> Lock step clusters
« The Ugly: Distributed Resilience
> Latency
> Eventual Consistency

> Data Loss
> CAP Theorem



Transaction Processing & High Availability

1. Migrate between known good states

2. Replicate the step

Databases

> Oracle: SCNs, RAC nodes, replication
> MySQL Cluster: Shards, 2PC, deltas and snapshots

> MySQL: Clustered file systems, replication

« Tandem NonStop — hardware & software stack with a
message passing kernel

* IMS TM transaction queue (Apollo Program)



“Event Sourced Design”

“Capture all changes to an application state as a sequence
of events” — Fowler (2005)

“Apply a sequence of change events to a model in order”
— Thompson

Modern References:
> “Object Prevalence” — Klaus Wuestefeld (2001)

> Node.|s
> Nginx, G-WAN

However the ideas have been around a long time...



Persistence and Recovery

« Transaction Log

> Record input sequence of events

> Replay to rebuild system state on recovery

> Great for performance testing and debugging!
« Snapshots

> Used to speed up recovery

> Do not need to keep transaction logs forever
- Data Migration

> Change model when system is to be upgraded

> Fix data issues



- External
Event Sourced Architecture System

Gateway
<< High Performance Messaging>>

Domain Model

Event
Services

<< Sequenced >>

Events

Archive
Journal Replica Database




HA Clusters

Event Service Event Service
1 2

<< Guaranteed Delivery >>

Cluster
Control

<< Replication>> \« Replication>>

Primary Data Centre

DR Data Centre

<< Gating >>




Replication Models & Failure Detection

Complexity
A

Block Shipping

Log Shipping

Elastic Cluster
Delta Stream

Multi-Active
Active Cluster Delta Stream
Delta Stream

Passive Cluster
Delta Stream

>
Protection



Importance of Design & Testing

Unit & Acceptance Tests in CI
Defensive argument checking
Aggregate methods for “transactions”

Exception handling

Getting this stuff right is easier than concurrent
programming in the business model!

These approaches are amazing for helping you learn

> Replay production logs for analysis and bug fixing



Scaling Event Sourced Architectures

* CORS - Command Query Responsibility Segregation
> Multiple read nodes/threads from same event stream

» Shards

> People, Stuff, and Deals

> Can partition on nodes/threads
 Complex Transactions

> Same approach as CQRS if single shot

> Most complex transactions are best broken down into a
state model with steps

Note: In-memory asynchronous designs give great performance!



Questions?

Blog: http://mechanical-sympathy.blogspot.com/

Twitter: @mjpt777


http://mechanical-sympathy.blogspot.com/
http://mechanical-sympathy.blogspot.com/
http://mechanical-sympathy.blogspot.com/

