
Martin Thompson - @mjpt777

Event Sourced Architectures

for
High Availability

What Is “High Availability” ?

• Availability refers to ability of the user community to
access a system – not about Uptime!

• By “High” availability we generally mean the system is
always there when we need it

• The 9’s are the typical way this is measured

> 99.999%? When did the issue occur?

• MTBF – Mean Time Between Failures

• MTTR – Mean Time To Recover !!!

• Bathtub curve for Failure Rates

• System pauses (e.g. Garbage Collection)

• What about hot upgrade?

The “Truth” About Production Outages

• Admin “Cock-ups”

• Clustering Software

• Hardware Failures

• Software Bugs

High Availability: The Good, The Bad, The Ugly!

• The Good: Queries

> Go parallel with lots of replicas

• The Bad: Updates

> Some problems cannot be made parallel but some can

> Lock step clusters

• The Ugly: Distributed Resilience

> Latency

> Eventual Consistency

> Data Loss

> CAP Theorem

Transaction Processing & High Availability

1. Migrate between known good states

2. Replicate the step

Databases

> Oracle: SCNs, RAC nodes, replication

> MySQL Cluster: Shards, 2PC, deltas and snapshots

> MySQL: Clustered file systems, replication

• Tandem NonStop – hardware & software stack with a
message passing kernel

• IMS TM transaction queue (Apollo Program)

“Event Sourced Design”

“Capture all changes to an application state as a sequence
of events” – Fowler (2005)

“Apply a sequence of change events to a model in order”
– Thompson

Modern References:

> “Object Prevalence” – Klaus Wuestefeld (2001)

> Node.js

> Nginx, G-WAN

However the ideas have been around a long time...

Persistence and Recovery

• Transaction Log

> Record input sequence of events

> Replay to rebuild system state on recovery

> Great for performance testing and debugging!

• Snapshots

> Used to speed up recovery

> Do not need to keep transaction logs forever

• Data Migration

> Change model when system is to be upgraded

> Fix data issues

Event Sourced Architecture

Journal

Archive

Database

Domain Model

Events

Gateway

External

System

<< Sequenced >>

<< Live Working Set >>

Event

Services

<< High Performance Messaging>>

Replica

HA Clusters

Event Service

1

Event Service

2

Primary Data Centre

DR Data Centre

Cluster

Control

<< Replication>>

<< Guaranteed Delivery >>

<< Gating >>

<< Replication>>

Replication Models & Failure Detection

Protection

Complexity

Log Shipping

Block Shipping

Passive Cluster

Delta Stream

Active Cluster

Delta Stream

Elastic Cluster

Delta Stream

Multi-Active

Delta Stream

Importance of Design & Testing

• Unit & Acceptance Tests in CI

• Defensive argument checking

• Aggregate methods for “transactions”

• Exception handling

• Getting this stuff right is easier than concurrent
programming in the business model!

• These approaches are amazing for helping you learn

> Replay production logs for analysis and bug fixing

Scaling Event Sourced Architectures

• CQRS – Command Query Responsibility Segregation

> Multiple read nodes/threads from same event stream

• Shards

> People, Stuff, and Deals

> Can partition on nodes/threads

• Complex Transactions

> Same approach as CQRS if single shot

> Most complex transactions are best broken down into a
state model with steps

Note: In-memory asynchronous designs give great performance!

Questions?

Blog: http://mechanical-sympathy.blogspot.com/

Twitter: @mjpt777

http://mechanical-sympathy.blogspot.com/
http://mechanical-sympathy.blogspot.com/
http://mechanical-sympathy.blogspot.com/

