
Building Distributed
Systems with Riak Core

Steve Vinoski
Architect, Basho Technologies

Cambridge, MA USA
http://www.basho.com/

@stevevinoski
vinoski@ieee.org

http://steve.vinoski.net/

1Friday, March 2, 12

http://www.basho.com
http://www.basho.com
http://steve.vinoski.net
http://steve.vinoski.net

What We’ll Cover

•Origins of Riak Core

•Abstractions and Functionality

•Getting started with Riak Core

2Friday, March 2, 12

20 Years Ago:
Client-Server

ClientClientClientClient

Server

3Friday, March 2, 12

Early-ish Web Apps

Database

app
server

app
server

app
server

web
server

web
server

web
server

web
server

web
server

web
server

web
server

web
server

4Friday, March 2, 12

Scaling Up

•Scaling up meant getting bigger
boxes

•Worked for client/server and early
web apps

•But couldn’t keep up with web growth

5Friday, March 2, 12

Scaling Out

•As businesses went from “having”
websites to “being” websites:

• increasing number of commodity
boxes

•eventually across multiple data
centers

6Friday, March 2, 12

Scaling Out
Changed Everything

•More concurrency, more distribution,
more replication, more latency, more
consistency issues

•And more operational issues

•As well as more system failures

•While also needing higher reliability
and uptime

7Friday, March 2, 12

CAP Theorem

• A conjecture put forth in 2000 by Dr. Eric
Brewer

• Formally proven in 2002

• A distributed system can never completely
guarantee these three properties:

• Consistency

• Availability

• Partition tolerance

8Friday, March 2, 12

Partition Tolerance

•Guarantees continued system
operation even when the network
breaks and messages are lost

•When—not if—a partition occurs,
choose between C and A

9Friday, March 2, 12

Consistency

•Distributed nodes see the same
updates at the same logical time

•Hard to guarantee across a
distributed system

•Any replication introduces
consistency vs. latency issues

10Friday, March 2, 12

Availability

•Guarantees the system will service
every read and write sent to it

•Even when things are breaking

11Friday, March 2, 12

Choosing AP

•Provides read/write availability even
when network breaks or nodes die

•Provides eventual consistency

•Example: Domain Name System (DNS)
is an AP system

12Friday, March 2, 12

Example AP Systems

•Amazon Dynamo

•Cassandra

•CouchDB

•Voldemort

•Basho Riak

13Friday, March 2, 12

PACELC

•Work by Daniel Abadi of Yale
University to augment CAP

•When Partitioned, trade off
Availability and Consistency

•Else

•Trade off Latency and Consistency

14Friday, March 2, 12

Handling Tradeoffs for
AP Systems

15Friday, March 2, 12

Assumptions

•We want to scale out

•We have a networked cluster of
nodes, each with local storage

•We’re choosing availability over
consistency when partitions occur

16Friday, March 2, 12

• Problem: how to make the system available
even if nodes die or the network breaks?

• Solution:

• allow reading and writing from multiple
nodes in the system

• avoid master nodes, instead make all nodes
peers

17Friday, March 2, 12

• Problem: if multiple nodes are involved, how
do you reliably know where to read or write?

• Solution:

• assign virtual nodes (vnodes) to physical
nodes

• use consistent hashing to find vnodes for
reads/writes

18Friday, March 2, 12

Consistent Hashing

19Friday, March 2, 12

Consistent Hashing and
Multi Vnode Benefits

•Data is stored in multiple locations

•Loss of a node means only a single
replica is lost

•No master to lose

•Adding nodes is trivial, data gets
rebalanced minimally and
automatically

20Friday, March 2, 12

• Problem: what about availability? What if the
node you write to dies or becomes
inaccessible?

• Solution: sloppy quorums (as opposed to
strict quorums)

• write to multiple vnodes

• attempt reads from multiple vnodes

21Friday, March 2, 12

N/R/W Values

•N = number of replicas to store (on
distinct nodes)

•R = number of replica responses
needed for a successful read
(specified per-request)

•W = number of replica responses
needed for a successful write
(specified per-request)

22Friday, March 2, 12

N/R/W Values

23Friday, March 2, 12

• Problem: what happens if a key hashes to
vnodes that aren’t available?

• Solution:

• read from or write to the next available
vnode (hence “sloppy” not “strict”
quorums)

• eventually repair via hinted handoff

24Friday, March 2, 12

N/R/W Values

25Friday, March 2, 12

Hinted Handoff

•Surrogate vnode holds data for
unavailable actual vnode

•Surrogate vnode keeps checking for
availability of actual vnode

•Once the actual vnode is again
available, surrogate hands off data to
it

26Friday, March 2, 12

Quorum Benefits

•Allows applications to tune
consistency, availability, reliability per
read or write

27Friday, March 2, 12

• Problem: how do the nodes in the ring keep
track of ring state?

• Solution: gossip protocol

28Friday, March 2, 12

•Nodes “gossip” their view of the state
of the ring to other nodes

• If a node changes its claim on the
ring, it lets others know

•The overall state of the ring is thus
kept consistent among all nodes in
the ring

Gossip Protocol

29Friday, March 2, 12

• Problem: what happens if vnode replicas get
out of sync?

• Solution:

• vector clocks

• read repair

30Friday, March 2, 12

• Problem: what happens if vnode replicas get
out of sync?

• Solution:

• vector clocks

• read repair

31Friday, March 2, 12

Vector Clocks

•Reasoning about time and causality in
distributed systems is hard

• Integer timestamps don’t necessarily
capture causality

•Vector clocks provide a happens-
before relationship between two
events

32Friday, March 2, 12

Vector Clocks

•Simple data structure:
[{ActorID,Counter}]

•All data has an associated vector
clock, actors update their entry when
making changes

•ClockA happened-before ClockB if all
actor-counters in A are less than or
equal to those in B

33Friday, March 2, 12

Vector Clocks are Easy

•Bryan Fink’s blog post: http://
basho.com/blog/technical/
2010/01/29/why-vector-clocks-are-
easy/

•Explains vector clocks using a dinner
invitation example

34Friday, March 2, 12

http://basho.com/blog/technical/2010/01/29/why-vector-clocks-are-easy/
http://basho.com/blog/technical/2010/01/29/why-vector-clocks-are-easy/
http://basho.com/blog/technical/2010/01/29/why-vector-clocks-are-easy/
http://basho.com/blog/technical/2010/01/29/why-vector-clocks-are-easy/
http://basho.com/blog/technical/2010/01/29/why-vector-clocks-are-easy/
http://basho.com/blog/technical/2010/01/29/why-vector-clocks-are-easy/
http://basho.com/blog/technical/2010/01/29/why-vector-clocks-are-easy/
http://basho.com/blog/technical/2010/01/29/why-vector-clocks-are-easy/

Dinner Example

•Alice, Ben, Cathy, Dave exchange
some email to decide when to meet
for dinner

•Alice emails everyone to suggest
Wednesday

35Friday, March 2, 12

Dinner Example

•Ben and Dave email each other and
decide Tuesday

•Cathy and Dave email each other and
Cathy prefers Thursday, and Dave
changes his mind and agrees

36Friday, March 2, 12

Dinner Example

•Ann then pings everyone to check
that Wednesday is still OK

•Ben says he and Dave prefer Tuesday

•Cathy says she and Dave prefer
Thursday

•Dave doesn’t answer

37Friday, March 2, 12

Dinner Example

•Ann then pings everyone to check
that Wednesday is still OK

•Ben says he and Dave prefer Tuesday

•Cathy says she and Dave prefer
Thursday

•Dave doesn’t answer
Conf

lict!

37Friday, March 2, 12

[{Alice,1}]
Wednesday

38Friday, March 2, 12

[{Alice,1}]
Wednesday

Ben

Cathy

Dave

38Friday, March 2, 12

Ben Dave

39Friday, March 2, 12

Ben Dave

[{Alice,1},{Ben,1}]
Tuesday

39Friday, March 2, 12

[{Alice,1},{Ben,1},{Dave,1}]
Tuesday

Ben Dave

39Friday, March 2, 12

Cathy

Dave

40Friday, March 2, 12

[{Alice,1},{Cathy,1}]
Thursday

Cathy

Dave

40Friday, March 2, 12

[{Alice,1},{Cathy,1}]
Thursday

Cathy

Dave

[{Alice,1},{Ben,1},{Dave,1}]
Tuesday

40Friday, March 2, 12

[{Alice,1},{Ben,1},{Cathy,1},{Dave,2}]
Thursday

[{Alice,1},{Cathy,1}]
Thursday

Cathy

Dave

41Friday, March 2, 12

[{Alice,1},{Ben,1},{Cathy,1},{Dave,2}]
Thursday

Cathy

Dave

41Friday, March 2, 12

[{Alice,1}]
Wednesday

Ben

Cathy

Dave

42Friday, March 2, 12

[{Alice,1}]
Wednesday

Ben

Cathy

Dave

[{Alice,1},{Ben,1},{Dave,1}]
Tuesday

42Friday, March 2, 12

[{Alice,1}]
Wednesday

Ben

Cathy

Dave

[{Alice,1},{Ben,1},{Dave,1}]
Tuesday

[{Alice,1},{Ben,1},{Cathy,1},{Dave,2}]
Thursday

42Friday, March 2, 12

[{Alice,1}]
Wednesday

Ben

Cathy

[{Alice,1},{Ben,1},{Dave,1}]
Tuesday

[{Alice,1},{Ben,1},{Cathy,1},{Dave,2}]
Thursday

42Friday, March 2, 12

[{Alice,1},{Ben,1},{Cathy,1},{Dave,2}]
Thursday

43Friday, March 2, 12

See: Easy!

[{Alice,1},{Ben,1},{Cathy,1},{Dave,2}]
Thursday

43Friday, March 2, 12

Vector Clocks are Hard

•Justin Sheehy’s blog post: http://
basho.com/blog/technical/
2010/04/05/why-vector-clocks-are-
hard/

44Friday, March 2, 12

http://basho.com/blog/technical/2010/04/05/why-vector-clocks-are-hard/
http://basho.com/blog/technical/2010/04/05/why-vector-clocks-are-hard/
http://basho.com/blog/technical/2010/04/05/why-vector-clocks-are-hard/
http://basho.com/blog/technical/2010/04/05/why-vector-clocks-are-hard/
http://basho.com/blog/technical/2010/04/05/why-vector-clocks-are-hard/
http://basho.com/blog/technical/2010/04/05/why-vector-clocks-are-hard/
http://basho.com/blog/technical/2010/04/05/why-vector-clocks-are-hard/
http://basho.com/blog/technical/2010/04/05/why-vector-clocks-are-hard/

Vector Clocks are Hard

•Our example shows how vclocks can
quickly grow

•Tradeoffs to keep them bounded:

•mark each entry with a timestamp

•occasionally drop old entries

•also trim vclock if too many entries

45Friday, March 2, 12

• Problem: what happens if vnode replicas get
out of sync?

• Solution:

• vector clocks

• read repair

46Friday, March 2, 12

Read Repair

•If a read detects that a vnode has
stale data, it is repaired via
asynchronous update

•Helps implement eventual consistency

47Friday, March 2, 12

This is Riak Core

•consistent
hashing

•vector clocks

•sloppy quorums

•gossip protocols

•virtual nodes
(vnodes)

•hinted handoff

48Friday, March 2, 12

Riak Core
Implementation

•Open source

•https://github.com/basho/riak_core

• Implemented in Erlang

•Helps you build AP systems

49Friday, March 2, 12

https://github.com/basho/riak_core
https://github.com/basho/riak_core

Why Erlang?

•Erlang started in the mid-80s at
Ericsson Computer Science
Laboratories

•Needed a better way to program
telephone switches for concurrency,
fault tolerance, and hot upgrade

•Erlang released as open source in
1998 (www.erlang.org)

50Friday, March 2, 12

http://www.erlang.org
http://www.erlang.org

Concurrency with Erlang

•A single Erlang VM instance can
supports millions of processes

•The VM schedules these onto CPU
cores

•Processes communicate via message
passing

•No locks, condition variables, etc.
makes programming easier

51Friday, March 2, 12

Reliability with Erlang

• Apps typically consist of numerous
Erlang processes (very lightweight
threads)

• Some processes supervise others

• If a process dies, its supervisor can
restart it

• “Let It Crash” philosophy

• Hot code loading for upgrades and fixes

52Friday, March 2, 12

Distribution with Erlang

•Messaging primitives the same
whether in same VM or different VM,
even across a network

•No “extra” packages or libraries
needed for distribution, it’s just built
in

53Friday, March 2, 12

Erlang Applications

• Erlang systems are composed of
applications

• Erlang provides tools for creating and
bundling applications, managing app
dependencies

• Numerous apps can run within a single VM

• See rebar, an Erlang project build tool
from Basho: https://github.com/basho/
rebar

54Friday, March 2, 12

https://github.com/basho/rebar
https://github.com/basho/rebar
https://github.com/basho/rebar
https://github.com/basho/rebar

Thanks

55Friday, March 2, 12

