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What We’ll Cover

•Origins of Riak Core

•Abstractions and Functionality

•Getting started with Riak Core
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Scaling Up

•Scaling up meant getting bigger 
boxes

•Worked for client/server and early 
web apps

•But couldn’t keep up with web growth

5Friday, March 2, 12



Scaling Out

•As businesses went from “having” 
websites to “being” websites:

• increasing number of commodity 
boxes

•eventually across multiple data 
centers
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Scaling Out
Changed Everything

•More concurrency, more distribution, 
more replication, more latency, more 
consistency issues

•And more operational issues

•As well as more system failures

•While also needing higher reliability 
and uptime
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CAP Theorem

• A conjecture put forth in 2000 by Dr. Eric 
Brewer

• Formally proven in 2002

• A distributed system can never completely 
guarantee these three properties:

• Consistency

• Availability

• Partition tolerance
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Partition Tolerance

•Guarantees continued system 
operation even when the network 
breaks and messages are lost

•When—not if—a partition occurs, 
choose between C and A
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Consistency

•Distributed nodes see the same 
updates at the same logical time

•Hard to guarantee across a 
distributed system

•Any replication introduces 
consistency vs. latency issues
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Availability

•Guarantees the system will service 
every read and write sent to it

•Even when things are breaking
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Choosing AP

•Provides read/write availability even 
when network breaks or nodes die

•Provides eventual consistency

•Example: Domain Name System (DNS) 
is an AP system
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Example AP Systems

•Amazon Dynamo

•Cassandra

•CouchDB

•Voldemort

•Basho Riak
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PACELC

•Work by Daniel Abadi of Yale 
University to augment CAP

•When Partitioned, trade off 
Availability and Consistency

•Else

•Trade off Latency and Consistency
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Handling Tradeoffs for
AP Systems

15Friday, March 2, 12



Assumptions

•We want to scale out

•We have a networked cluster of 
nodes, each with local storage

•We’re choosing availability over 
consistency when partitions occur
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• Problem: how to make the system available 
even if nodes die or the network breaks?

• Solution:

• allow reading and writing from multiple 
nodes in the system

• avoid master nodes, instead make all nodes 
peers
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• Problem: if multiple nodes are involved, how 
do you reliably know where to read or write?

• Solution:

• assign virtual nodes (vnodes) to physical 
nodes

• use consistent hashing to find vnodes for 
reads/writes
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Consistent Hashing
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Consistent Hashing and 
Multi Vnode Benefits

•Data is stored in multiple locations

•Loss of a node means only a single 
replica is lost

•No master to lose

•Adding nodes is trivial, data gets 
rebalanced minimally and 
automatically
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• Problem: what about availability? What if the 
node you write to dies or becomes 
inaccessible?

• Solution: sloppy quorums (as opposed to 
strict quorums)

• write to multiple vnodes

• attempt reads from multiple vnodes
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N/R/W Values

•N = number of replicas to store (on 
distinct nodes)

•R = number of replica responses 
needed for a successful read 
(specified per-request)

•W = number of replica responses 
needed for a successful write 
(specified per-request)
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N/R/W Values
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• Problem: what happens if a key hashes to 
vnodes that aren’t available?

• Solution:

• read from or write to the next available 
vnode (hence “sloppy” not “strict” 
quorums)

• eventually repair via hinted handoff
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N/R/W Values
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Hinted Handoff

•Surrogate vnode holds data for 
unavailable actual vnode

•Surrogate vnode keeps checking for 
availability of actual vnode

•Once the actual vnode is again 
available, surrogate hands off data to 
it

26Friday, March 2, 12



Quorum Benefits

•Allows applications to tune 
consistency, availability, reliability per 
read or write

27Friday, March 2, 12



• Problem: how do the nodes in the ring keep 
track of ring state?

• Solution: gossip protocol
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•Nodes “gossip” their view of the state 
of the ring to other nodes

• If a node changes its claim on the 
ring, it lets others know

•The overall state of the ring is thus 
kept consistent among all nodes in 
the ring

Gossip Protocol
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• Problem: what happens if vnode replicas get 
out of sync?

• Solution:

• vector clocks

• read repair
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• Problem: what happens if vnode replicas get 
out of sync?

• Solution:

• vector clocks

• read repair

31Friday, March 2, 12



Vector Clocks

•Reasoning about time and causality in 
distributed systems is hard

• Integer timestamps don’t necessarily 
capture causality

•Vector clocks provide a happens-
before relationship between two 
events

32Friday, March 2, 12



Vector Clocks

•Simple data structure:  
[{ActorID,Counter}]

•All data has an associated vector 
clock, actors update their entry when 
making changes

•ClockA happened-before ClockB if all 
actor-counters in A are less than or 
equal to those in B
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Vector Clocks are Easy

•Bryan Fink’s blog post: http://
basho.com/blog/technical/
2010/01/29/why-vector-clocks-are-
easy/

•Explains vector clocks using a dinner 
invitation example
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Dinner Example

•Alice, Ben, Cathy, Dave exchange 
some email to decide when to meet 
for dinner

•Alice emails everyone to suggest 
Wednesday
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Dinner Example

•Ben and Dave email each other and 
decide Tuesday

•Cathy and Dave email each other and 
Cathy prefers Thursday, and Dave 
changes his mind and agrees
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Dinner Example

•Ann then pings everyone to check 
that Wednesday is still OK

•Ben says he and Dave prefer Tuesday

•Cathy says she and Dave prefer 
Thursday

•Dave doesn’t answer
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Dinner Example

•Ann then pings everyone to check 
that Wednesday is still OK

•Ben says he and Dave prefer Tuesday

•Cathy says she and Dave prefer 
Thursday

•Dave doesn’t answer
Conf

lict!
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[{Alice,1}]
Wednesday
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[{Alice,1}]
Wednesday

Ben

Cathy

Dave
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Ben Dave
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Ben Dave

[{Alice,1},{Ben,1}]
Tuesday
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[{Alice,1},{Ben,1},{Dave,1}]
Tuesday

Ben Dave
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Cathy

Dave
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[{Alice,1},{Cathy,1}]
Thursday

Cathy

Dave
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[{Alice,1},{Cathy,1}]
Thursday

Cathy

Dave

[{Alice,1},{Ben,1},{Dave,1}]
Tuesday
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[{Alice,1},{Ben,1},{Cathy,1},{Dave,2}]
Thursday

[{Alice,1},{Cathy,1}]
Thursday

Cathy

Dave
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[{Alice,1},{Ben,1},{Cathy,1},{Dave,2}]
Thursday

Cathy

Dave
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[{Alice,1}]
Wednesday

Ben

Cathy

Dave
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[{Alice,1}]
Wednesday

Ben

Cathy

Dave

[{Alice,1},{Ben,1},{Dave,1}]
Tuesday
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[{Alice,1}]
Wednesday

Ben

Cathy

Dave

[{Alice,1},{Ben,1},{Dave,1}]
Tuesday

[{Alice,1},{Ben,1},{Cathy,1},{Dave,2}]
Thursday
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[{Alice,1}]
Wednesday

Ben

Cathy

[{Alice,1},{Ben,1},{Dave,1}]
Tuesday

[{Alice,1},{Ben,1},{Cathy,1},{Dave,2}]
Thursday
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[{Alice,1},{Ben,1},{Cathy,1},{Dave,2}]
Thursday
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See: Easy!

[{Alice,1},{Ben,1},{Cathy,1},{Dave,2}]
Thursday
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Vector Clocks are Hard

•Justin Sheehy’s blog post: http://
basho.com/blog/technical/
2010/04/05/why-vector-clocks-are-
hard/
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Vector Clocks are Hard

•Our example shows how vclocks can 
quickly grow

•Tradeoffs to keep them bounded:

•mark each entry with a timestamp

•occasionally drop old entries

•also trim vclock if too many entries

45Friday, March 2, 12



• Problem: what happens if vnode replicas get 
out of sync?

• Solution:

• vector clocks

• read repair
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Read Repair

•If a read detects that a vnode has 
stale data, it is repaired via 
asynchronous update

•Helps implement eventual consistency
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This is Riak Core

•consistent 
hashing

•vector clocks

•sloppy quorums

•gossip protocols

•virtual nodes 
(vnodes)

•hinted handoff
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Riak Core 
Implementation

•Open source

•https://github.com/basho/riak_core

• Implemented in Erlang

•Helps you build AP systems
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Why Erlang?

•Erlang started in the mid-80s at 
Ericsson Computer Science 
Laboratories

•Needed a better way to program 
telephone switches for concurrency, 
fault tolerance, and hot upgrade

•Erlang released as open source in 
1998 (www.erlang.org)
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Concurrency with Erlang

•A single Erlang VM instance can 
supports millions of processes

•The VM schedules these onto CPU 
cores

•Processes communicate via message 
passing

•No locks, condition variables, etc. 
makes programming easier
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Reliability with Erlang

• Apps typically consist of numerous 
Erlang processes (very lightweight 
threads)

• Some processes supervise others

• If a process dies, its supervisor can 
restart it

• “Let It Crash” philosophy

• Hot code loading for upgrades and fixes
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Distribution with Erlang

•Messaging primitives the same 
whether in same VM or different VM, 
even across a network

•No “extra” packages or libraries 
needed for distribution, it’s just built 
in
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Erlang Applications

• Erlang systems are composed of 
applications

• Erlang provides tools for creating and 
bundling applications, managing app 
dependencies

• Numerous apps can run within a single VM

• See rebar, an Erlang project build tool 
from Basho: https://github.com/basho/
rebar
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Thanks
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