
Asynchronous programming on
the server and the client in F#

Tomas Petricek
@tomaspetricek

In Visual Studio since 2010

Asynchronous programming

On the server side On the client side

Demo: Social drawing app

Server Agents Browser Client

Async on the Server

Reactive programming without
the inversion of control

Async on the Server

Reactive model is important

Node.js and C# 5.0

F# asynchronous workflows

Keep standard programming model

Standard exception handling and loops

Sequential and parallel composition

Agents and message-passing

Protected * (Behaviour + State)

F# and the Browser

F# and Silverlight

Both compiler and libraries

Interactive Try F#

F# and JavaScript

Translating since 2006!

Open-source Pit, commercial WebSharper

Have fun!

http://tomasp.net/sd

Event handling in F#

Data flow using combinators
and control flow using async

Asynchronous GUI

User interactions = State machines

Asynchronous GUI

Updating rectangles Drawing rectangles

waiting

after 500ms

waiting

drawing

down up

Asynchronous GUI

Updating rectangles Drawing rectangles

waiting

after 500ms

waiting

drawing

down up

move

What else is there?

F# Interactive in your web browser
www.tryfsharp.org

Type providers in F# 3.0

Integrating data in the language

Bridges an important mismatch

Data and services use REST, XML, …

Languages use types and objects

Type providers

Where to learn more?

Functional and F# trainings

http://functional-programming.net

In London and New York

Functional Programming eXchange

http://skillsmatter.com

Next Friday (March 16th)

Summary

Asynchronous programming

Writing non-blocking code

Without the inversion of control

Application areas

Server-side – reactive request processing

Client-side – encoding state machines

