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In Visual Studio since 2010 

  



Asynchronous programming 

On the server side On the client side 



Demo: Social drawing app 

Server Agents Browser Client 



Async on the Server 

 

Reactive programming without  
the inversion of control 



Async on the Server 

Reactive model is important 

Node.js and C# 5.0 

F# asynchronous workflows 

Keep standard programming model 

Standard exception handling and loops 

Sequential and parallel composition 



Agents and message-passing 

 
 
 

Protected * ( Behaviour + State ) 



F# and the Browser 

F# and Silverlight 

Both compiler and libraries 

Interactive Try F#  

F# and JavaScript 

Translating since 2006! 

Open-source Pit, commercial WebSharper 



Have fun! 

 
 

http://tomasp.net/sd 



Event handling in F# 

 
 

Data flow using combinators  
and control flow using async 



Asynchronous GUI 

 
 

User interactions = State machines 



Asynchronous GUI 

Updating rectangles Drawing rectangles 

waiting 

after 500ms 

waiting 

drawing 

down up 



Asynchronous GUI 

Updating rectangles Drawing rectangles 

waiting 
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What else is there? 

F# Interactive in your web browser 
www.tryfsharp.org 

Type providers in F# 3.0 

Integrating data in the language 

Bridges an important mismatch 

Data and services use REST, XML, … 

Languages use types and objects 



Type providers 

  



Where to learn more? 

Functional and F# trainings 

http://functional-programming.net 

In London and New York 

Functional Programming eXchange 

http://skillsmatter.com  

Next Friday (March 16th) 



Summary 

Asynchronous programming 

Writing non-blocking code 

Without the inversion of control 

Application areas 

Server-side – reactive request processing 

Client-side – encoding state machines 


